All Mixed Up In The Blood Bank

Julia Larson MLS(ASCP)
The University of Kansas Hospital
Clinical Presentation
- 74 y/o female with a history of AML presented to the Cancer Center complaining of extreme fatigue

History
- 1st MUD transplant 6/25/14
 - Donor was O positive w/ recipient as A neg
 - Unsuccessful
 - Graft failure
- 2nd MUD transplant 12/11/14
 - Same donor
 - BM biopsy with chimerism scheduled for 3/6/15 to check cellularity
Patient Presentation
3/03/15

- Labs
 - WBC 2.5 K/uL
 - Hgb 6.8 g/dL
 - Hct 19.7 %
 - Plt 25 K/uL

- Blood Bank
 - Received order to transfuse 1 unit
 - Indication <7.1 g/dL
 - Specimen drawn
Blood Bank Serology

Patient

Antibody Detection

<table>
<thead>
<tr>
<th>Cell</th>
<th>Echo</th>
<th>Neo</th>
<th>Gel</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4+</td>
<td>4+</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>4+</td>
<td></td>
<td>4+</td>
</tr>
<tr>
<td>III</td>
<td>4+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>4+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABO/RH Interpretation

<table>
<thead>
<tr>
<th>Phase</th>
<th>Anti-A</th>
<th>Anti-B</th>
<th>Anti-A,B</th>
<th>Anti-D</th>
<th>Anti-D</th>
<th>Mono Cont</th>
<th>A1 Cells</th>
<th>B Cells</th>
<th>A2 Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>O neg</td>
<td>IS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>2+</td>
<td>4+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antibody Identification

<table>
<thead>
<tr>
<th>Ortho Lot</th>
<th>Phases</th>
<th>Immucor Lot</th>
<th>Phases</th>
<th>Immucor Lot</th>
<th>Phases</th>
<th>Immucor Lot</th>
<th>Phases</th>
<th>Immucor Lot</th>
<th>Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRA218</td>
<td>4+</td>
<td>02904</td>
<td>2+</td>
<td>37</td>
<td>1</td>
<td>3+</td>
<td>3+</td>
<td>03912</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4+</td>
<td>1</td>
<td>2+</td>
<td>2+</td>
<td>I</td>
<td>1+</td>
<td>1+</td>
<td>3+</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>4+</td>
<td>4</td>
<td>3+</td>
<td>3+</td>
<td>II</td>
<td>1+</td>
<td>1+</td>
<td>3+</td>
<td>II</td>
</tr>
<tr>
<td>3</td>
<td>4+</td>
<td>6</td>
<td>2+</td>
<td>2+</td>
<td>AC</td>
<td>1+</td>
<td>1+</td>
<td>3+</td>
<td>AC</td>
</tr>
<tr>
<td>4</td>
<td>4+</td>
<td>8</td>
<td>2+</td>
<td>2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4+</td>
<td>10</td>
<td>2+</td>
<td>2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4+</td>
<td>12</td>
<td>3+</td>
<td>2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4+</td>
<td>13</td>
<td>2+</td>
<td>2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4+</td>
<td>17</td>
<td>3+</td>
<td>2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4+</td>
<td>AC</td>
<td>3+</td>
<td>3+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Direct Antiglobulin

<table>
<thead>
<tr>
<th>Poly</th>
<th>IgG</th>
<th>C3</th>
<th>Saline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+</td>
<td>2+</td>
<td>2+</td>
<td>0</td>
</tr>
</tbody>
</table>

Other Cell Typings

<table>
<thead>
<tr>
<th>Anti-</th>
<th>Anti-</th>
<th>Anti-</th>
<th>Anti-</th>
</tr>
</thead>
</table>

Cell Typing

<table>
<thead>
<tr>
<th>Phase</th>
<th>Anti-A</th>
<th>Anti-B</th>
<th>Anti-A,B</th>
<th>Anti-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>IS</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Reverse Typing

<table>
<thead>
<tr>
<th>Phase</th>
<th>A1 Cells</th>
<th>B Cells</th>
<th>A2 Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>O neg</td>
<td>2+</td>
<td>4+</td>
<td></td>
</tr>
</tbody>
</table>

Diagnosis

- Antibody Registry: FND ✓ anti-K NFND □ Entered □

Transfusion Hx/Medications

- Previously ID’d anti-K at TUKH 2/22/15

Report

- SENT TO CBC

Additional Billing

- AABI AGIS Other

Date

- 3/3/2015
What Do We Know?

- Patient has a history of a cold autoantibody and anti-K previously ID’d 2/22/15
- Patient is much more reactive
 - Reactive in all phases of testing, all methods, all temps
 - Now has a positive DAT
- Patient now has a warm autoantibody in addition to the cold autoantibody
 - Eluate reactive with all cells tested
- Did she develop additional alloantibodies?
 - Our prewarmed technique didn’t circumvent the reactivity
- Is the cold autoantibody clinically significant?
 - 2+ complement on cells, hemolysis?
Off to Immuno at CBC!!!
CBC Consultation

- ABORh could not be determined based upon TUKH’s history
 - Donor is O positive/patient is A negative
 - Receiving O negative red cells during conversion

- Positive DAT
 - Required multiple warm washing
 - Red cells were coated with anti-IgG and complement

- Eluate
 - Warm autoantibody
Plasma
- Cold autoantibody
 - Reactivity circumvented with prewarmed technique
- Anti–K with no additional alloantibodies

Cold Autoantibody Investigation
- 2+ complement on cells
- Patient was hemolyzing
- Was the cold autoantibody clinically significant?
- Could this be a Mixed–Type AIHA??
“Mixed-Type” refers to a condition of “combined warm and cold” autoantibodies

- Warm reactive IgG autoantibody in eluate and plasma
- Cold reactive IgM autoantibody present in plasma showing broad thermal range
 - Reacts strongly at lower temps but also at or above 30°C
 - Normal antibody titers at 4°C (<64)
 - Often has no apparent specificity

Complex reactivity in all phases of testing
Used to assess the clinical significance of autoantibodies

Autoantibodies with a wide thermal range have the potential to cause significant immune hemolysis

Thermal Amplitude Studies
- Specimen is collected, placed in a 37°C waterbath allowing the red cells to settle and the warmed plasma is separated
- Warmed plasma is tested with SC I, SCII, AC at 30°C and 37°C

Titration Studies
- Plasma is serially diluted with saline, tested with SC I and SCII at 4°C
CBC Consultation

- Thermal Amplitude Studies
 - Cold autoantibody demonstrated weak reactivity at 30C and 37C with autologous cells only

- Titration Studies
 - Cold autoantibody titered to 32 at 4C

- Conclusion
 - Results are equivocal in determining the clinical significance of the cold autoantibody

- Recommendation
 - Transfuse only if necessary!
Plan of Action

- Only transfuse if HGB drops below 5.0 g/dL
- Give K-negative red cells, least incompatible
- Split the units in half and transfuse slowly

Possible Future Problems
- Ref Lab’s cell separation was unsuccessful
 - Poor retic counts due to BMT diagnosis and treatment
- Unable to phenotype or send off for DNA analysis
 - Donor/recipient mismatch
 - Would the phenotype/genotype be donor or recipient?
- Piece of info would be invaluable for future transfusions
 - Possible antigen matching of units
Patient Outcome

- Patient medicated to control the autoantibodies
 - Predisone
 - Solu-Medrol
 - Rituxan
- Patient received 5 units of RBCs between 4/6–5/26/15
 - Split units
 - Rec’d as an outpatient
- Last HGB check was 5.6 g/dL
- Admitted to Hospice 5/26/15
Questions??
Sources

- AABB Technical Manual, 18th Ed, 2014