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OBJECTIVES

« Discuss the challenges of growing RBCs in culture in the
laboratory for future transfusion

 Understand the technology of gene editing with CRISPR
(clustered regularly interspaced short palindromic repeats)

« Describe the use of genetic tools to make “designer” RBCs and
how they might be useful




CELLS IN THE HUMAN BODY

Number of cells in the average human body
25-30 trillion = 30,000,000,000,000!

200 different types of cells
-Red blood cells (RBCSs) - by far the most abundant

over 80 percent of all cells in the body

producing between 173 and 259 billion RBCs per day
roughly the same number of RBCs are dying off

- skin cells

- neurons (nerve cells)

- fatcells

38 trillion bacterial cells = microbiome




NEWS AND VIEWS

January 2005 Nature Biotechnology

Douay L Laboratory, Paris
2002 Nat Biotechnol., 20:467-72. Human erythroid cells produced ex vivo at large scale
differentiate into red blood cells in vivo.

Ban ki ng on I'Ed blnnd CE’I I 5 2005 Nat Biotechnol. ,23:69-74. Ex vivo generation of fully mature human red blood cells from

hematopoietic stem cells.

Marla Mohandas

The bulk production of human red blood cells In culture Is a first step toward an alternative source of transfusible
blood.
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DO RBCS GROWN IN LABORATORY SURVIVE IN
HUMANS ?

2011: Proof of principle for transfusion of in vitro generated red blood cells.
Blood,118:5071-9 Giarratana MC, Rouard H, Dumont A et al.

e (CD34* cells stem cells from adult - mobilization with G-CSF

*  81% £ 2% enucleated RBCs
* blood group antigen expression equivalent
« 02 carrying capacity, deformability equivalent

« injected 1010 (10 billion) cRBCs grown under GMP conditions

« labeled with 51Cr
« cellsin circulation at 26 days - between 41% and 63%
+ ‘“compared favorably with the reported half-life of 28 + 2 days for native RBCs”

* 4 weeks of storage




CULTURED RBCS:
CD34+ CORD BLOOD OR CD34+ ADULT

2018: Yan et al. Am. J Hematology 1-10

Cell number (x10%)
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- more cells and more retics
- slower growing




PRODUCTION OF CRBCS FROM
ADULT CD34+ CELLS

40-70% enucleation: 95-99% after filtration
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MAJOR CHALLENGES

« Scale Up

« 5x10°RBCsin each ml of blood
1 unit = 2.4 X 1012 RBCs = trillions

1 cord blood
2-5 million CD34+ cells '*’

« Human - 10 billion RBCs every hour

« 2,777 RBCs per second
 High cost

»  Growth factors $$$$: erythropoietin, SCF, IL-3, transferrin
 Source of cells

« cord blood
« adult peripheral blood stem cells

~ 2 units of blood MAXIMUM e 2 %




STEM CELL RESEARCH: REPROGRAM
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2006 - Reprograming of adult cells

Yamanaka’s lab
Kyoto, Japan




IPSC’S- INDUCED PLURIPOTENT STEM CELLS

* 4 transcription factor genes (KIf4, Sox2, c-Myc, Oct4)

2018

« convert adult cells into “pluripotent” stem cells human iPSCs
« generate any type of cells with appropriate growth factors 14,756 references
* continuous supply
« can do genetic modification
« patient's adult cells could provide immune-matched supply of cells
 KLF4, SOX2, c-Myc, Nanog, Oct-3/4, LIN-28 |
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DIFFERENTIATION OF HUMAN IPSCS TO RBCS
INDEPENDENT OF DONOR CELL TYPE OF ORIGIN

Haematologica 2015 Jan;100(1):32-41

* human neural stem cells and human _cord blood CD34+ stem cells
equivalent potential for differentiation into mature red blood cells

« Problem is enucleation

IPSC-derived erythroid cells
« low enucleation - suboptimal final maturation
« for transfusion - need enucleated cells

 Problem is expansion numbers

« adult transfusion needs require vast numbers of cells
approximately 2.4x1012 cells in each blood unit (trillions)

*  transfusion of a chronically transfused patient who receives 6
units per year would require about 1.5x1013 cells per year




HOW CAN GROWING RBCS IN CULTURE
CURRENTLY BE USEFUL?

« Biological insights - erythroid expression system

« terminal erythroid differentiation
* hematologic diseases
« structure and function of erythrocyte proteins and blood group antigens

« Reagent red cells — for antibody identification

250, OOO 500,000 RBCs/assay
Rare donor RBCs
Rh null, Kell null, etc.
Genetically engineer combinations not found in natural populations

« Studying molecules involved in parasite invasion

* identification of Babesia receptors on the RBC
« Genetic engineer removal of specific proteins




INDUCED PLURIPOTENT STEM
CELLS (IPSCS) AS REAGENTS

Reprogram cells from Rare Doncg
]
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1. Lacking high prevalence Rh
antigens (RHCE, hrB-, hrS-)

2. Lacking combinations of
\ antigens (D, U, Fya/b, Jkb, etc.)

/

Adapted from Redman Pract Ed 2016

* Project

* Recruit rare donors
- harvest buffy coat

- reprogram as iPSCs
- differentiate to RBCs in culture
- test in Blood Bank assays

- compare with original RBCs




IPSCS CELL LINES FROM RARE

DONORS

Donor |Blood Group Relevant Comments

Phenotype Genotype

1 GroupO,D - - RHD useful for patients who have altered RHCE genes and
lack RhCcEe inactive RHCE make antibodies to all forms of RhCE

2 Group O-, hrB- RHD*Dlla(3-7)CE allows rapid distinction between antibodies directed to e
E-,S-, Jk(b-), Fy(a—b-) RHCE*ceS antigen (often called Rh17)

3 Group O, hrS- RHD*DAR
E-,S- Jk(b-), Fy(a—-b-) RHCE*ceAR

4 Group O, E-,S- Jk(b-), RHD*DAUO allows distinction between different hrS antibodies
Fy(a—b-), hrS—-and hrB- RHCE*ceMO

5 Group O-, GYPB*01N Glycophorin B null; also negative for combinations of
Jk(b-),Fy(a—b-), S—s— U- antigens often need for sensitized patients with SCD

6 Group O+, e-, GYPB*01N

Jk(b=),Fy(a=b=), S=s- U-

« antibody identification
- 2.5x10° cells/assay
« transfusion
2.5 x 1012 cells/unit - not yet feasible




IPSC DERIVED CULTURED RBCS
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FL4-H :: DRAQS

ENUCLEATION RATE IN CRBCS
PRODUCED FROM IPSCS

Q3

6.95

5-10%




TYPING FOR M/N, C/c and E/e

(donor is M-N+, C-c+, E-e+)

anti-M anti-N anti-M anti-N

anti-C anti-c anti-C anti-c

anti-E anti-e anti-E anti-e

original RBCs cRBCs
donor donor

anti-M Bio Rad seraclone
anti-N Immucor gamma-clone

original RBCs cRBCs
donor donor

anti-C Immucor gamma-clone
anti-c Immucor Seriesl

original RBCs cRBCs
donor donor

anti-E Immucor gamma-clone
anti-e Immucor gamma-clone




INDUCED PLURIPOTENT STEM
CELLS (IPSCS) AS REAGENTS
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1. Lacking high prevalence Rh
antigens (RHCE, hrB-, hrS-)
2. Lacking combinations of

\ antigens (D, U, Fya/b, Ss, etc.)

/Reprogram rare donor ceID

/ Gene edit IPSCs

Adapted from Redman Pract Ed 2016

e

1. Rh null

2. RhCE null (D--)

3. Variant Rh (e.g. DAK, Go(a)) /




GENE EDITING
CRISPR/CASY “TARGETED”

Precise-target gene editing
Bacteria / archaea

« adaptive immunity to eliminate bacteriophage infection
« discovered in 1980’s

« 2007 - bacteria acquire resistance against infection by integrating a genome
fragment of the virus into its “CRISPR locus.” Barrangou, R., et al. Science, 315, 1709-1712.

2012 - Doudna and Charpentier realized potential to change or repair DNA at
a precise gene location

2015 “breakthrough of the year”




CRISPR/CAS9 GENOME EDITING

To introduce change into the DNA:

* guide RNA (gRNA) - design RNA sequence (~20 bases)
complementary to the target locus

» Guides Cas9 to the right part of the genome
* enzyme Cas9 - ‘molecular scissors’ cuts the DNA at that specific location

* DNAis repaired — replaced with mutation OR with correct DNA




CRISPR/CAS9 GENOME EDITING
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CURE OPTION FOR SCD ?? ‘0 (,.\

L II od Cell

CRISPR/Cas9 - revolutionized genome engineering but also brought the possibility of
translating into a clinically meaningful reality

Sickle cell disease (SCD)

disease caused by a single gene mutation

* A-T mutation: Adenine (A) to thymidine (T) transversion in the HBB gene
 Single amino acid change from glutamic acid to a valine in hemoglobin molecule

Genome editing as a curative option?
To correct the mutation in patient hematopoietic stem/progenitor cells (HSPCs)

Site-specific correction of the sickle mutation would allow for permanent production of
normal red blood cells




CURE OPTION FOR SCD ?? ‘;O (,.,
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Therapeutic Gene editing of autologous HSPCs

. HSPCs - harvested from bone marrow - GCSF or Plerixafo
HSPC mobiliaton PBMCs enriched using the CD34 marker
bt CD34+ cells are stimulated in stem cell cytokine media

Conditioning
Reinfusion of GE-HSC
Monitor Patients

« site-specific engineered double strand breaks (DSBs)
Xf)y i % . .
* repaired by HR homologous recombination
/ staBlr\(sso"“D?ij‘D'f\‘,’/”,f,:VS) - to correct mutation for functional gene correction
P « patient conditioned using myeloablative regiments to
NN \ PN 25200 .
*K NHE-&@ %@@HRW N clear non-corrected resident bone-marrow
 Genetic engineered (GE) HSC are reinfused into patient
« Patient monitored for engraftment
Reactivate Knockout Functional Corrected

Gene Expression  Gene Expression Gene Correction Point Mutation e FDA requ | rement Of a 15-year fOIIOW-u p
(HbF) (CCR5) (HBB; IL2RG) (HBB; CYBB)




GENE EDIT FROM EXISTING IPSCS

Children’s Hospital of Philadelphia
iIPSC CORE

- Genotyped 12 “wild-type” iPSCs lines

Stella Chou
- ABO, Rh, and extended antigen phenotypes
- ldentify Group O lines — 4 of 12
ABO RHD Predicted ABO/D
iPSC line Method Cell of origin | 9enotype | genotype type Predicted extended antigen type by genotype
CHOPWT8 Lentivirus Peripheral *01/*01 RHD Group O, RhD+ C+ E- c+ e+ K- Jka+ Jkb+ Fya- Fyb+ S- s+ U+ Doa- Dob+
blood
CHOPWT9 Sendai Peripheral *01/+01 RHD Group O, RhD+ C- E+ c+ e- K- Jka+ Jkb+ Fya- Fyb+ S- s+ U+ Doa+ Dob+
blood
CHOPWT4 Sendai Fibroblast *01/+01 No RHD Group O, RhD- C- E- c+ e+ K- Jka- Jkb+ Fya+ Fyb- S- s+ U+ Doa+ Dob+
gene
CHOPWT10 Sendai Peripheral *01/+01 No RHD Group O, RhD- C- E- ct+ e+ K- Jka- Jkb+ Fya+ Fyb- S- s+ U+ Doa+ Dob+
blood gene




RH NULL RBC’S

. CRISPR/Cas9 —to target RH locus
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mul ation
RHCE ‘—-("\ 39 cut site
ld! /YL.IH.VQ./\L. TOGTCAC AL.(. A
v Pt i /1 3TTCAACAC G TGGTGACAGCCA
Mutat algo CATGTTCAAGAC o ) CAUTTIGTGACAGCGA
Btsl
RHCE PCR product S I L T A T ™
from genomic DNA ST G I LT LT
/\ Blal dgestion
No homologous recombination Homologous recombinaton
AT TNt T AT P T NOATNGATINGDe ¢ SNATNT
~200 bp 120 bp -80 bp

CRISPR/Cas9 gene editing to mutate RHCE in RHD negative cell line

- Guide RNAs target a sequence close to the desired mutation site.
- If mutant oligonucleotide sequence is introduced, restriction enzyme digestion results in two fragments.

Abstract: IGT6-TU2-12 Induced Pluripotent Stem Cell-Derived Red Cells for Use as Reagents to Resolve Rh Specificities

Children’s Hospital of Philadelphia and New York Blood Center
Hyun H. An, J Aeschlimann, D.Posocco, JA Maguire, P Gadue, DL French, CM.Westhoff , ST. Chou




DIFFERENTIATION TO RED CELLS
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PERFORMANCE IN BLOOD BANK ASSAYS

4H BH 24 FfH FO

Standard Gel Card Assay
e ° 4

¥ & -

500K iRBCs

" 1 “Stuck” at top of gel matrix

3 related to cell size

Anti-D No anti-D




Day 6 IPSC-derived RBCs
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MATURATION AND SIZE OF IRBCS

Red cell size Cell surface maturation markers
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IRBCs - Rh antigen typing gel card
/DonorRBC
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RH TYPING OF IRBCS

Gel card assay
14 Bd DH AE
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iIRBCs from parent line (D+ E- e+)




ANTIBODY FROM PATIENT WITH SCD IS
NON-REACTIVE WITH RH NULL IRBCS

=
Patient: e+ with anti-e in plasma
—
RHCE genotype:*ce733G /ce733G !
partial e with allo anti-e -~ -~
Donor Donor IRBC
e+ e- Rh null
2+ () ()




SUMMARY

IPSC technology and gene editing can be combined to generate
customized red cell panels for blood banks

IRBCs with novel antigens or lacking any number of antigen
combinations is possible

IRBCs can undergo sufficient maturation to be used in common blood
bank assays

Potential to be one of the first clinical applications of iPSC-derived
blood cells to impact patient care

IRBCs from rare donors will be important for transfusion when scale-
up technology is available for in vitro RBC production
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