Transfusion in beating heart organ donors

EMILY COBERLY, MD
MEDICAL DIRECTOR, TRANSFUSION SERVICES
UNIVERSITY OF MISSOURI COLUMBIA
Outline

Evidence for transfusion thresholds
- Focus on risk for organ dysfunction/ischemic events

Beating heart organ donor population

Transfusion practices in beating heart organ donors
Evidence for transfusion thresholds
RBC transfusion thresholds

Transfusion requirements in critical care (TRICC trial)
- 838 adults admitted to the ICU
- 7 g/dL vs 10 g/dL
- Lower in-hospital mortality rate in the restrictive strategy group, with trend toward lower 30-day mortality with restrictive strategy
- The multiple organ dysfunction score was significantly lower (p=0.03) in the restrictive strategy group

MODS Score: Multiple Organ Dysfunction

Select Criteria:
- pAO2/FIO2 Ratio
- Platelet Count (10^3/mm3)
- Serum Bilirubin
- Pressure Adjusted Heart Rate (HR*CVP/MAP)
- Glasgow Coma Scale
- Serum Creatinine

Results:
- Total Criteria Point Count:
- MODS Score
  - 0 points: ICU Mort 0%, Hosp Mort 0%, ICU Stay 2 Days
  - 1-4 points: ICU Mort 1-2%, Hosp Mort 7%, ICU Stay 3 Days
  - 5-8 points: ICU Mort 3-5%, Hosp Mort 16%, ICU Stay 6 Days
  - 9-12 points: ICU Mort 25%, Hosp Mort 50%, ICU Stay 10 Days
  - 13-16 points: ICU Mort 50%, Hosp Mort 70%, ICU Stay 17 Days
  - 17-20 points: ICU Mort 75%, Hosp Mort 82%, ICU Stay 21 Days
  - 21-24 points: ICU Mort 100%, Hospital Mortality 100%

NEJM. 1999;340(6).
RBC transfusion thresholds

Transfusion strategies for patients in pediatric intensive care units

- 637 pediatric ICU patients
- 7 g/dL vs. 9.5 g/dL
- No significant difference between the two groups in mortality, serious adverse events, length of hospital stay
- No significant difference between groups in organ dysfunction (PELOD-2)

NEJM. 2007;356(16).
Evidence for RBC transfusion thresholds

Transfusion trigger trial for functional outcomes in cardiovascular patients undergoing surgical hip fracture repair (FOCUS trial)
- 2016 adults with cardiovascular disease and hip fracture surgery
- Excluded active bleeding, cancer, or acute MI within past 30 days
- 8 g/dL vs 10 g/dL
- No significant difference between groups in rates of in-hospital acute myocardial infarction, unstable angina, serious adverse events, or death

NEJM. 2011;365(26).
Evidence for RBC transfusion thresholds

Transfusion strategies for acute upper gastrointestinal bleeding
- 889 adults with acute upper GI bleed
- Excluded patients who were exsanguinating/massive transfusions
- 7 g/dL vs 9 g/dL
- 45-day mortality, rate of re-bleeding, overall rate of complications, and length of stay were all significantly less in the restrictive group

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Restrictive Strategy (N=444)</th>
<th>Liberal Strategy (N=445)</th>
<th>Hazard Ratio with Restrictive Strategy (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death from any cause within 45 days — no. (%)</td>
<td>23 (5)</td>
<td>41 (9)</td>
<td>0.55 (0.33–0.92)</td>
<td>0.02</td>
</tr>
<tr>
<td>Adverse events — no. (%)†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any‡</td>
<td>179 (40)</td>
<td>214 (48)</td>
<td>0.73 (0.56–0.95)</td>
<td>0.02</td>
</tr>
<tr>
<td>Transfusion reactions</td>
<td>14 (3)</td>
<td>38 (9)</td>
<td>0.35 (0.19–0.65)</td>
<td>0.001</td>
</tr>
<tr>
<td>Fever</td>
<td>12 (3)</td>
<td>16 (4)</td>
<td>0.74 (0.35–1.59)</td>
<td>0.56</td>
</tr>
<tr>
<td>Transfusion-associated circulatory overload</td>
<td>2 (&lt;1)</td>
<td>16 (4)</td>
<td>0.06 (0.01–0.45)</td>
<td>0.001</td>
</tr>
<tr>
<td>Allergic reactions</td>
<td>1 (&lt;1)</td>
<td>6 (1)</td>
<td>0.16 (0.02–1.37)</td>
<td>0.12</td>
</tr>
<tr>
<td>Cardiac complications§</td>
<td>49 (11)</td>
<td>70 (16)</td>
<td>0.64 (0.43–0.97)</td>
<td>0.04</td>
</tr>
<tr>
<td>Acute coronary syndrome¶</td>
<td>8 (2)</td>
<td>13 (3)</td>
<td>0.61 (0.25–0.94)</td>
<td>0.27</td>
</tr>
<tr>
<td>Pulmonary edema</td>
<td>12 (3)</td>
<td>21 (5)</td>
<td>0.56 (0.27–1.12)</td>
<td>0.07</td>
</tr>
<tr>
<td>Pulmonary complications</td>
<td>48 (11)</td>
<td>53 (12)</td>
<td>0.89 (0.59–1.36)</td>
<td>0.67</td>
</tr>
<tr>
<td>Acute kidney injury</td>
<td>78 (18)</td>
<td>97 (22)</td>
<td>0.78 (0.56–1.08)</td>
<td>0.13</td>
</tr>
<tr>
<td>Stroke or transient ischemic attack</td>
<td>3 (1)</td>
<td>6 (1)</td>
<td>0.49 (0.12–2.01)</td>
<td>0.33</td>
</tr>
<tr>
<td>Bacterial infections</td>
<td>119 (27)</td>
<td>135 (30)</td>
<td>0.87 (0.63–1.21)</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Evidence for RBC transfusion thresholds

Transfusion requirements in septic shock (TRISS trial)

- 1005 adults with septic shock
- Excluded patients with acute MI or life-threatening bleeding
- 7 g/dL vs 9 g/dL
- No difference in mortality, rate of ischemic events, or use of life support between the two groups

NEJM. 2014;371(15).
RBC transfusion thresholds

Liberal or restrictive transfusion after cardiac surgery

- 2003 nonemergent cardiac surgery patients
- 7.5 g/dL vs 9.0 g/dL
- All-cause mortality at 90 days was higher in the restrictive group (4.2% vs 2.6%, p=0.045)
- No statistically significant difference between groups in ischemic events, including myocardial infarction and acute kidney injury
Platelet transfusion thresholds

Clinical Setting 3: Adult Patients Having Major Elective Nonneuraxial Surgery

Recommendations

Recommendation 4: The AABB suggests prophylactic platelet transfusion for patients having major elective nonneuraxial surgery with a platelet count less than $50 \times 10^9$ cells/L.
Plasma transfusion thresholds

<table>
<thead>
<tr>
<th>Table 11</th>
<th>Fresh Frozen Plasma Transfusion Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Year</td>
</tr>
<tr>
<td>National Institutes of Health</td>
<td>1985</td>
</tr>
<tr>
<td>Hong Kong Government Blood Banking Advisory Committee</td>
<td>1990</td>
</tr>
<tr>
<td>British Committee for Standards in Haematology</td>
<td>1992</td>
</tr>
<tr>
<td>Committee Report</td>
<td>1994</td>
</tr>
<tr>
<td>College of American Pathologists</td>
<td>1994</td>
</tr>
<tr>
<td>American Society of Anesthesiologists</td>
<td>1994</td>
</tr>
<tr>
<td>American College of Obstetrics and Gynecology</td>
<td>1994</td>
</tr>
<tr>
<td>Canadian Medical Association Expert Working Group</td>
<td>1997</td>
</tr>
<tr>
<td>Japanese Ministry of Health and Welfare</td>
<td>1999</td>
</tr>
<tr>
<td>North Ireland Clinical Resources Efficiency Support Team</td>
<td>2001</td>
</tr>
<tr>
<td>Australia National Health and Medical Research Council</td>
<td>2001</td>
</tr>
<tr>
<td>American Red Cross</td>
<td>2002</td>
</tr>
<tr>
<td>South African National Blood Service</td>
<td>2003</td>
</tr>
<tr>
<td>British Committee for Standards in Haematology</td>
<td>2004</td>
</tr>
<tr>
<td>New York State Council on Human Blood and Transfusion Services</td>
<td>2004</td>
</tr>
</tbody>
</table>

INR = (patient PT/mean normal PT)\(^{ISI}\)
Cryoprecipitate transfusion thresholds

Primarily used to treat fibrinogen deficiency, recommended when fibrinogen is less than 100 mg/dL
Overuse

The Joint Commission and American Medical Association have identified blood transfusion as one of the top 5 overused medical treatments.
Beating heart organ donors
Beating heart organ donors

Organ donation after brain stem death, but prior to death by cardiorespiratory criteria

Allows for organs to be harvested under optimal conditions for organ viability

Common source of transplant organs in Western countries, consent to procure organs and tissue is granted by families in more than 70% of cases when requested

Organ harvesting generally occurs as soon as possible after declaration of brain death, usually within 1-2 days

The purpose of transfusion in beating heart organ donors is to maintain organ viability

Following diagnosis of brain stem death, section 43 of the Human Tissue Act 2004 allows interventions to optimize organ quality prior to donation, but only for the least invasive and minimum steps necessary.
Beating heart organ donors

The Uniform Anatomic Gift Act of 1968 grants individuals 18 years and older the power to donate their organs and tissue.

The National Organ Transplant Act of 1984 developed a national organ transplant system (Organ Procurement and Transplantation Network--OPTN).

In 1986 the United Network for Organ Sharing (UNOS), a private nonprofit organization, was awarded a contract to operate the OPTN.
UNOS Data Collection

Did you know?

UniNet™ enables transplant centers, organ procurement organizations, and tissue banks to:
- manage their list of waiting transplant candidates
- access and complete electronic versions of Data Collection Forms
- add donor information and run donor-recipient matching tools
- access various transplant data reports and policies

UniNet™, the electronic transplant information application, enables the OPTN to collect data entered by transplant professionals on transplant candidates, deceased and living donors, and transplant recipients. OPTN members that enter these data include transplant centers, histocompatibility laboratories, and organ procurement organizations.

Pre-transplant information is derived primarily from the waitlist and match runs. Transplant professionals enter some pre-transplant information about both candidates and recipients and post-transplant information about recipients on organ-specific OPTN data collection forms. Information used to reconcile donor and recipient data about the transplant is entered on the Donor Organ Disposition record.

Pre-Transplant Data
- Waiting List
- Match Run
- Donors
- Organ Procurement Organizations (OPOs)

UNOS Data Collection

Number of transfusions during this (terminal) hospitalization: *

- NONE
- 1 - 5
- 6 - 10
- GREATER THAN 10
- UNKNOWN
Initial hypotheses

Evidence for transfusion thresholds equally applies to beating heart organ donors.

Blood product overuse occurs with beating heart organ donors, as it does in living patients.

Transfusion reactions are under-reported in beating heart organ donors.
Methods

IRB approved retrospective analysis of all beating heart organ donors between January 1, 2004 and October 1, 2014

At the time brain death is declared, the first name of all beating heart organ donors is changed to “Donor” in the electronic medical record

A search of patients with first name “Donor” revealed a total of 439 patients during this time period

No exclusions
Data Collection

For each donor
- Peak, trough, initial, and final hemoglobin
- Peak, trough, initial and final platelet count
- Peak, trough, initial and final PT/INR
- Fibrinogen level
- Total number of PRBC, platelet, plasma, and cryoprecipitate transfusions
  - When pooled platelet products of 5-6 were transfused, they were tabulated as a single unit.
- Reported transfusion reactions
Statistical analysis

All data was collected by one physician for consistency

Validation through random review of 10% of the sample by a second independent physician

Statistical analysis was performed with GraphPad (La Jolla, California)

- Unpaired Student’s t-test and chi square test
- $p < 0.05$ was considered statistically significant
Results
Packed red blood cells

304 donors (69.2%) were transfused a total of 894 units of packed red blood cells

- Average number of units transfused was 2.94 (range 1 to 15 units).
- The hemoglobin level was measured only once for 47 donors (15.5%) and one patient had no hemoglobin measurement

Of the donors who did not receive PRBC transfusion, 114 (88.9%) had a trough hemoglobin level greater than 9.0 g/dL.
PRBC transfusion

Trough hemoglobin was greater than 8 g/dL in 63.2% of donors who were transfused.

48 donors (15.8%) were transfused when trough hemoglobin was greater than 10 g/dL.
134 donors (44.1%) who were transfused had a final hemoglobin value of greater than 10 g/dL.
Subgroup analysis: Indication for RBC transfusion (1/1/13-10/1/14)

<table>
<thead>
<tr>
<th>INDICATION FOR TRANSFUSION</th>
<th>ORDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organ donor/donor management</td>
<td>60 (44.8%)</td>
</tr>
<tr>
<td>Active bleeding (or hemolysis) or anticipated bleeding (ex. surgery or procedure)</td>
<td>30 (22.4%)</td>
</tr>
<tr>
<td>Symptomatic anemia</td>
<td>22 (16.4%)</td>
</tr>
<tr>
<td>Acute blood loss with hemodynamic instability</td>
<td>8 (6.0%)</td>
</tr>
<tr>
<td>Low H/H</td>
<td>7 (5.2%)</td>
</tr>
<tr>
<td>Pre-op transfusion for anticipated blood loss</td>
<td>5 (3.7%)</td>
</tr>
<tr>
<td>Severe hemolytic anemia</td>
<td>1 (0.7%)</td>
</tr>
<tr>
<td>GSW</td>
<td>1 (0.7%)</td>
</tr>
</tbody>
</table>

TOTAL 134 RBC orders
73 unique donors
Platelet transfusion

165 donors (37.6%) received a total of 316 platelet units, with an average of 1.91 units per donor (range 1-10 units)
Platelet transfusion

15 donors (9.1%) had a trough platelet count of greater than $100 \times 10^3$/mCL

197 (62%) platelet transfusions occurred in donors with a trough platelet count greater than $50 \times 10^3$/mCL

Of the donors who had a trough platelet count between $51 \times 10^3$/mCL and $100 \times 10^3$/mCL, 98 received platelet transfusion and 91 did not
Plasma transfusion

217 donors (49.4%) received a total of 845 units of plasma, with an average of 3.89 units per donor (range 1-17 units)
Plasma transfusion

75 donors who received plasma transfusion (34.6%) had a peak INR of less than 1.5 and 112 (51.6%) had a peak INR of 1.6 to 2.0.

688 (81%) plasma units were transfused to donors with peak INR less than 2.0.
Cryoprecipitate

A total of 23 patients (5.2%) received cryoprecipitate transfusion

- 19 (82.6%) did not have any fibrinogen levels
- Of the 4 patients that did have fibrinogen levels, the lowest level was 239 mg/dL
Transfusion reactions

Three potential transfusion reactions were reported to the transfusion service out of a total 2055 PRBC, platelet, and plasma units transfused (0.15%)
  - 2 mild allergic reactions
  - 1 reaction related to the donor’s underlying medical condition

Mild allergic transfusion reactions are reported to occur in at least 1% of blood product transfusions

Allergic transfusion reactions were reported significantly less often than expected (p=0.0001)...why?
  - Beating heart organ donors can’t report symptoms?
  - Vital sign fluctuations in beating heart organ donors make transfusion reactions more difficult to detect?
  - The immune system of beating heart organ donors is altered such that certain types of transfusion reactions are less likely to occur?
Conclusions
Conclusions

Many large studies in various patient populations support restrictive transfusion strategies, which show equivalent or superior outcomes in organ dysfunction and ischemic events when compared to liberal transfusion strategies.

While the optimal transfusion thresholds for beating heart organ donors are currently unknown, our study found that this population was transfused PRBCs, platelets, plasma and cryoprecipitate beyond the current best practice transfusion guidelines for other populations:
- Highlights potential suboptimal use of limited biologic resource
- Potential for harm to donor organs
- Use beyond “minimum necessary”—ethical implications?

Transfusion reactions were underreported in this population.
Acknowledgements

Dr. Garrett Booth
Jennifer Blackburn