A Prescription for Hemolysis: When You Can Read The Handwriting, And When You Can't

Nicholas Yu, MLS(ASCP)^{CM¹}

Objectives

- Distinguish the clinical features of a potential case of druginduced immune hemolytic anemia (DIIHA)
- Identify laboratory tests and values that will aid in the diagnosis of DIIHA
- Describe the theoretical mechanisms that lead to hemolysis in DIIHA
- List drugs that have been implicated in cases of DIIHA

Case Study 1

- 63 years old male
- Paraplegia and neurogenic bladder
- Rehabbing at skilled nursing facility, but reports having to self catheterize every 12 hours (urology recommended 3-4 hour)
- Presenting with altered mental status
 - Determined to be caused by toxic metabolic encephalopathy due to a complicated UTI
- Prescribed piperacillin/tazobactam (ZOSYN), 3.375g every 6 hours

- On admission, laboratory results unremarkable aside from urinalysis:
 - -HGB: 13.9g/dL -PLT: 226K/μL
 - Urinalysis: Yellow
 - -Nitrite: POS
 - -Leukocytes: 3+
 - -Blood: NEG

-WBC: 7.9K/μL -T. Bili: 0.7mg/dL

Bacteria: Many
WBC: 10 – 20/HPF
RBC: 0 – 2/HPF

Case Study 1: Days 1 – 6

- Patient being evaluated and treated for UTI
 - HGB trending lower
 - WBC trending higher
 - BUN trending higher
 - Day 0 blood culture NEG after 5 days

Day	0	2	4	6
HGB (g/dL)	13.9	13.0	11.6	8.8
WBC (K/µL)	7.9	10.6	14.1	23.7
BUN (mg/dL)	20	19	27	37

Case Study 1: Day 6 Type and Crossmatch, DAT

• Due to drop in HGB, a type and crossmatch (XM) is ordered

Screening Cells	Solid Phase	Gel	LISS AHG
SC1 (R1R1)	1+	2+	
SC2 (R2R2)	0	1+	
SC3 (rr)	3+		
AC		3+	1+

• DAT Results

Polyspecific	IgG Specific	Complement	Saline
2+	2+	(+)	0/0

Case Study 1: LISS Panel

	D	С	С	Ε	е	К	k	Fy ^a	Fyb	Jk ^a	Jkb	Le ^a	Le ^b	Μ	Ν	S	S	Lu ^a	Lu ^b	AHG
1	+	+	0	+	+	0	+	0	+	+	+	0	+	+	0	+	+	0	+	(+)
2	+	+	0	0	+	0	+	+	0	0	+	+	0	+	+	+	+	0	+	(+)
3	+	0	+	+	0	0	+	+	0	+	+	0	+	+	0	0	+	0	+	0
4	+	0	+	0	+	0	+	0	0	0	+	0	+	+	+	0	+	0	+	1+
5	0	+	+	0	+	0	+	0	0	+	0	0	+	0	+	0	0	0	+	1+
6	0	0	+	+	+	0	+	0	+	+	0	+	0	+	0	+	+	0	+	1+
7	0	0	+	0	+	+	+	0	+	+	0	0	+	+	0	+	0	0	+	1+
8	0	0	+	0	+	0	+	+	0	0	+	+	0	0	+	+	+	0	+	3+
9	0	0	+	0	+	+	0	+	0	+	0	0	+	+	0	+	+	0	+	3+
10	+	+	0	0	+	0	+	+	+	+	+	+	0	0	+	0	+	+	+	(+)
TC	+	0	+	0	+	0	+	0	0	+	0	0	0	0	+	+	+	0	+	1+

Case Study 1: Eluate

	D	С	С	Ε	е	К	k	Fya	Fyb	Jka	Jkb	Le ^a	Le ^b	Μ	Ν	S	S	Lu ^a	Lu ^b	AHG
1	+	+	0	0	+	0	+	0	+	0	+	0	+	+	+	0	+	0	+	(+)
2	+	+	0	0	+	+	+	+	0	+	+	0	+	+	0	+	0	0	+	(+)
3	+	0	+	+	0	0	+	0	+	0	+	0	+	+	0	+	+	0	+	0
4	+	0	+	0	+	0	+	0	0	+	0	0	0	0	+	+	+	0	+	1+
5	0	+	+	0	+	0	+	+	+	+	0	0	+	+	0	+	+	0	+	1+
6	0	0	+	+	+	0	+	+	+	+	0	+	0	0	+	+	+	0	+	1+
7	0	0	+	0	+	+	+	0	+	+	0	0	+	+	+	0	+	0	+	1+
8	0	0	+	0	+	0	+	0	+	0	+	+	0	+	0	0	+	0	+	3+
9	0	0	+	0	+	0	+	+	0	+	+	0	+	0	+	0	+	0	+	3+
10	0	0	+	0	+	0	+	0	0	+	+	0	0	+	+	+	0	0	+	(+)
11	+	+	0	0	+	0	+	0	+	+	+	+	0	+	0	0	+	0	+	1+

Case Study 1: Other Testing

- Solid phase panel was panreactive
- Patient was e antigen POS

Send out to Community Blood Center IRL corroborated findings

 Full phenotype ascertained if transfusion of red blood cells (RBC) needed

- Patient appears to have resolved his UTI, however his clinical picture is much worse:
 - -HGB: 6.2g/dL -PLT: 399K/μL
 - Urinalysis: Amber/Brown
 - -Nitrite: NEG
 - -Leukocytes: NEG
 - -Blood: 3+

-WBC: 27.4K/μL -T. Bili: 11.8mg/dL

Bacteria: None
WBC: 0 – 2/HPF
RBC: 0 – 2/HPF

- A rapid drop in HGB prompts consults for advice in transfusion from the Blood Bank and Hematology
- Workup and results suggest autoimmune hemolytic anemia

 Total Bilirubin (0.7 → 11.8mg/dL)

– Lactate Dehydrogenase 1377U/L

Day	0	6	7 (Morning)	7 (Evening)
HGB (g/dL)	13.9	8.8	6.2	5.0
T. Bili (mg/dL)	0.7	-	11.8	11.8
BUN (mg/dL)	20	37	47	51

- Etiology of autoimmune hemolytic anemia not clear
 Infection, drugs, and malignancy considered
- Transfusion not recommended
 - Patient is actively hemolyzing
 - Available phenotypically matched units are least incompatible
- Piperacillin/tazobactam administration stopped

- Patient's condition continues to deteriorate
- Additional testing:
 - Cold Agglutinins Titer: < 1:32</p>
 - Haptoglobin < 30mg/dL
- Emergent therapeutic plasma exchange initiated (17 units)

Day	7 (Evening)	8 (Morning)	TPE	8 (Evening)
HGB (g/dL)	5.0	4.1		3.8
T. Bili (mg/dL)	11.8	12.4		8.0
BUN (mg/dL)	51	60		72

- Patient becomes clinically unstable and symptomatic, requiring transfusion of two units of RBCs throughout the day
- The patient has demonstrated acute kidney injury, dialysis started

Day	7 (Morning)	8 (Evening)	9 (Morning)	9 (Evening)
HGB (g/dL)	6.2	3.8	3.6	4.2
T. Bili (mg/dL)	11.8	8.0	3.4	2.6
BUN (mg/dL)	47	72	76	68
LDH (U/L)	1377		708	
Hapto (mg/dL)			<30	

Case Study 1: Days 10 – 13

- A new XM is ordered, the screen is NEG
 - The patient receives his final unit of RBC for this admission

Day	9 (Morning)	10	11	13
HGB (g/dL)	3.6	4.9	5.8	6.1
T. Bili (mg/dL)	3.4	2.6	1.5	1.2
LDH (U/L)	708	634	527	437
Hapto (mg/dL)	< 30	< 30	< 30	< 30

Case Study 1: Day 13 – 30 (Discharge)

• The patient would continue to improve and planned to find a different skilled nursing facility to better take care of his needs

Day	13	15	18	21	25	30
HGB (g/dL)	6.1	6.1	6.5	6.6	7.1	8.1
T. Bili (mg/dL)	1.2	1.0	0.7	0.5	0.5	0.5
LDH (U/L)	437	406	315	217	303	186
Hapto (mg/dL)	< 30	< 30	47	74	128	174

	Case Study 1	l: Tir	nelin	e					- Xľ	VI SCN NE 1 RBC	EG
	X	M Orc	lered		Γl	Drug	Stop	bed	Т	ransfuse	d
	Day	0	4	6	7	8	9	10	11	30	
	HGB (g/dL)	13.9	11.6	8.8	5.0	3.8	3.6	4.9	5.8	8.1	
	T. Bili (mg/dL)	0.7	-	-	11.8	8.0	6.2	2.6	1.5	0.5	
	BUN (mg/dL)	20	27	37	51	72	76	83	60	47	
	LDH (U/L)	-	-	-	1377	-	708	634	514	186	
	Hapto (mg/dL)	-	-	-	-	< 30	< 30	< 30	< 30	174	
Pi a	iperacillin zobactam	1	7 FFP	TPE	Perfo	rmed	L 	2 RB	C Tra	nsfused	

Case Study 2

- 71 years old male
- COPD, CAD, cardiomyopathy, DVT
- Presenting with shortness of breath and labored breathing
 Determined to be caused by pleural effusion
- Prescribed medication to empirically treat health care-associated pneumonia
 - Cefepime, 2g every 8 hours
 - Vancomycin
 - Azithromycin

Case Study 2: Days 0 – 1

- On admission, laboratory results:
 -HBG: 10.2g/dL (baseline 9.0g/dL)
 Patient has history of iron deficient anemia
 -PLT: 344K/μL -T. Bili: 0.6mg/dL
 -WBC: 2.8K/μL -INR: > 10
- Day 1: HGB drops to 8.1g/dL
 - Patient had a bout of hematochezia while in the ED, INR has since been corrected with vitamin K

Case Study 2: Days 2 – 6

- Patient being evaluated and treated for pleural effusion
 HGB trending lower
 - Potentially from bleeding from chest tube

Day	0	1	3	5
HGB (g/dL)	10.2	8.1	7.8	7.1

• Day 5: Cefepime discontinued and replaced with ceftriaxone, 2g every 24 hours

Case Study 2: Days 7 – 8

- Day 7: HGB reaches transfusion cutoff, XM ordered
 Screen: NEG
 - 1 unit RBC transfused

Day	5	6	7	8
HGB (g/dL)	7.1	7.4	6.9	7.0
T. Bili (mg/dL)	0.4	0.4	0.4	0.4
BUN (mg/dL)	25	17	13	12

• Day 8: Patient appears nonresponsive to previous day's transfusion another unit RBC ordered and transfused

Case Study 2: Days 8 – 10

• Patient appears to be recovering, HGB trending to baseline

Day	8	9	10
HGB (g/dL)	7.0	8.5	9.1
T. Bili (mg/dL)	0.4	0.5	0.5
BUN (mg/dL)	12	16	17

Case Study 2: Days 11 – 13

Day 11: HGB again reaches transfusion cutoff, XM ordered
 – Screen: NEG

Day	10	11 (1)	11 (2)	12 (1)	12 (2)	12 (3)	12 (4)	13 (1)	13 (2)	13 (3)
HGB (g/dL)	9.1	7.1	7.1	6.5	6.9	7.9	6.5	7.1	7.1	7.0
T. Bili (mg/dL)	0.5	0.8	0.7	1.5	1.9	2.3	2.0	2.1	1.7	-
BUN (mg/dL)	17	30	30	30	30	24	26	23	24	-

9 units of RBC transfused over these 48 hours (at or below HGB 7.1), none apparently successful

- New XM ordered
 - Screen: NEG

Day	13 (2)	14 (1)	14 (2)	14 (3)
HGB (g/dL)	7.1	7.8	8.8	4.5
T. Bili (mg/dL)	1.7	2.5	3.2	-
BUN (mg/dL)	24	25	30	-

- Sudden drop in HGB to 4.5g/dL prompts for the transfusion of 2 units of RBC
- Patient also showing signs of delirium/metabolic encephalopathy

Case Study 2: Day 15 Workup

- Due to decrease in hemoglobin and increase in total bilirubin workup initiated
- DAT Results

Polyspecific	IgG Specific	Complement	Saline
2+	2+	1+	0/0

- Eluate: Nonreactive
- Urinalysis
 - Amber
 - -Blood: 3+

- RBC: 0 2/HPF
- Urobilinogen: Increased

- Ceftriaxone quickly identified as a potential cause for hemolysis and administration stopped
- Patient transfused 2 units of RBC through the day

Day	14 (2)	14 (3)	15 (1)	15 (2)	15 (3)	15 (4)	15 (5)
HGB (g/dL)	8.8	4.5	6.7	7.6	5.4	9.3	9.3
T. Bili (mg/dL)	3.2	-	-	3.4	-	4.0	4.4
BUN (mg/dL)	30	-	68	45	50	62	68
LDH (U/L)	-	-	-	1635	-	-	-
Hapto (mg/dL)	-	-	-	< 30	-	-	_

Case Study 2: Days 16 – 27 (Discharge)

- Patient no longer requires transfusion and quickly recovers to a HGB 11.3g/dL
- Patient suffered an acute kidney injury, but did not require dialysis

Day	15 (2)	15 (3)	15 (5)	16	17	18	27
HGB (g/dL)	7.6	5.4	9.3	9.1	11.3	10.5	9.3
T. Bili (mg/dL)	3.4	-	4.4	4.4	2.5	1.6	0.6
BUN (mg/dL)	45	50	68	69	59	57	23
LDH (U/L)	1635	-	-	2513	878	-	_
Hapto (mg/dL)	< 30	-	-	< 30	38	-	-

Case Study 2: Timeline 2 RBC Transfused 2 RBC Transfused									Drug 2 Tra	; Stopp 2 RBC nsfuse	ed	
Day	0	1	5	8	9	10	13	14	15	16	17	
HGB (g/dL)	10.2	8.1	7.1	7.0	8.5	9.1	7.1	4.5	7.6	9.1	11.3	
T. Bili (mg/dL)	-	-	0.4	0.4	0.5	0.8	1.7	3.2	3.4	4.4	2.5	
BUN (mg/dL)	-	-	25	12	16	17	24	30	45	69	59	
LDH (U/L)	-	-	-	-	-	-	-	-	1635	2513	878	
Hapto (mg/dL)	-	-	-	-	-	-	-	-	< 30	< 30	38	
Cefepime			L	Ceft	riaxo	ne	9	RBC	Tran	sfuse	d	

Drug Induced Immune Hemolytic Anemia (DIIHA)

- Have been implicated in hemolytic anemias since the 1980s
- More than 130 drugs have been described as being associated with DIIHA
- Drugs most implicated in DIIHA (Garraty and Arndt, 2014)
 –1. Piperacillin
 - -2. Cefotetan
 - -3. Ceftriaxone
 - -On the rise: Platinum containing drugs

Drug Induced Immune Hemolytic Anemia (DIIHA)

- Classically, they were described and loosely organized by drug dependency in detection and theoretical mechanism of action:
 - -Drug Dependent detection
 - Drug adsorption (DT)
 - "Immune complex" formation (+Drug)
 - -Drug Independent detection
 - Autoantibody production (AA)
 - Nonimmunologic protein adsorption (NIPA)

Drug Adsorption (DT)

- Antibody directed against drug adsorbed to RBC
 Screen: NEG
 - -Eluate: Nonreactive
- Due to "distance" from cell surface, does not initiate complement cascade
 - -DAT: IgG POS, sometimes Complement
 - -Extravascular hemolysis, gradual

"Immune Complex" Formation (+Drug)

- Antibody directed against drug forms immune complexes that attach to RBC
 - -Screen: NEG
 - -Eluate: Nonreactive
- Immune complexes adsorbed to RBC surface can active complement cascade
 - -DAT: Complement POS, sometimes IgG
 - –Intravascular hemolysis, can be severe

Autoantibody Production (AA)

- Antibody directed against self RBCs develop as a result of potential immune system changes
 - -Indistinguishable from WAIHA
 - -Screen: POS
 - -Eluate: Panreactive
- Autoantibodies develop
 - -DAT: IgG POS, often Complement POS
 - -Clinical presentation varies, typically extravascular hemolysis

Nonimmunologic Protein Adsorption (NIPA)

- No antibody to any particular antigen is produced. Membrane modification by the drug causes nonspecific protein adsorption

 Screen: NEG
 - -Eluate: NEG
- RBC membrane will adsorb immunoglobulins, complement proteins, etc.
 - -DAT: IgG POS, Complement POS
 - -Can present with hemolysis, not well documented

Drug Induced Immune Hemolytic Anemia (DIIHA)

- Nowadays, there is not enough evidence to support DIIHA mechanisms being discreet and individual
- Each of the theoretical mechanisms have weaknesses and are at times, unable to explain things
- Several, similar unifying hypotheses have been proposed

DIIHA: A Unifying Hypothesis

RED CELL MEMBRANE

Summary of DIIHA

	Serological	I Theoretical Mechanism		DAT		Serum		ate	Commonly Associated	
	Classification			С3	DT	UT	DT	UT	Drugs	
pendent	Reactive with Drug- Treated Cells (DT)	Drug Adsorption	+	-/+	+	-	+	-	Penicillin, Other/Older Cephalosporins and Beta-Lactams	
Drug-De	Reactive in the Presence of Drug (+Drug)	"Immune Complex" Formation	-/+	+	-	-	-	-	Piperacillin, Ceftriaxone, Other Cephalosporins, Quinine, Quinidine	
Drug-Independent	Autoantibody Production (AA)	Stimulate Autoantibody Production	+	+/-	+	+	+	+	Fludarabine, Methyldopa	
	Nonimmunologic Protein Adsorption (NIPA)	Membrane Modification, Nonspecific Protein Adsorption	+	+	+	-	-	-	Cephalothin, Platinum Containing Drugs	

References

- Arndt PA. Drug-induced immune hemolytic anemia: the last 30 years of changes. *Immunohematology*. 2014;30(2):44-54
- Fung MK, Eder AF, Spitalnik SL, Westhoff CM, eds. *Technical Manual*. 19th ed. Bethesda, MD: AABB; 2017.
- Garratty G, Arndt PA. Drugs that have been shown to cause drug induced immune hemolytic anemia or positive direct antiglobulin tests: some interesting findings since 2007. *Immunohematology*. 2014;30(2):66-79