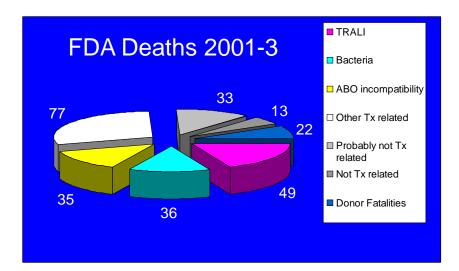


# **Bacterial Contamination of Platelets**

Richard Benjamin MD PhD Chief Medical Officer


## **Objectives**

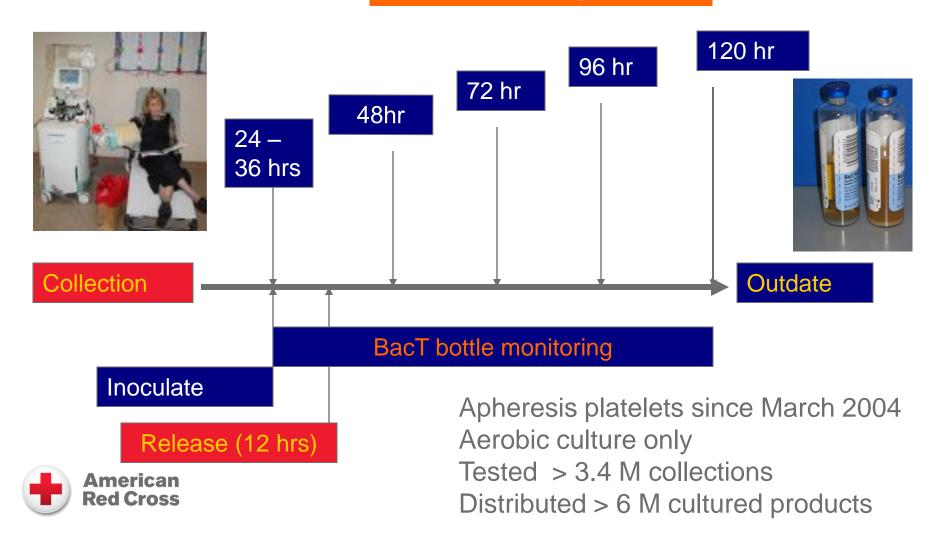
- To describe the results of routine bacterial culture testing of platelets
- To estimate the residual risk of platelet bacterial contamination
- To outline approaches to minimizing risk to patients and the technologies available to further protect patients



#### **Bacterial Sepsis**






#### AABB Standard 5.1.5.1 (first added in March 2004)

 The blood bank or transfusion service shall have methods to limit and detect bacterial or inactivate bacterial contamination in all platelet components.



#### BacT/ALERT<sup>tm</sup> Bacterial QC Culture

Transfusion "Neg to date"



#### Red Cross Bacterial Testing on Apheresis Platelets

<u>Data period</u>: 3/1/2004 – 12/31/2011

Total collections: 3,426,573

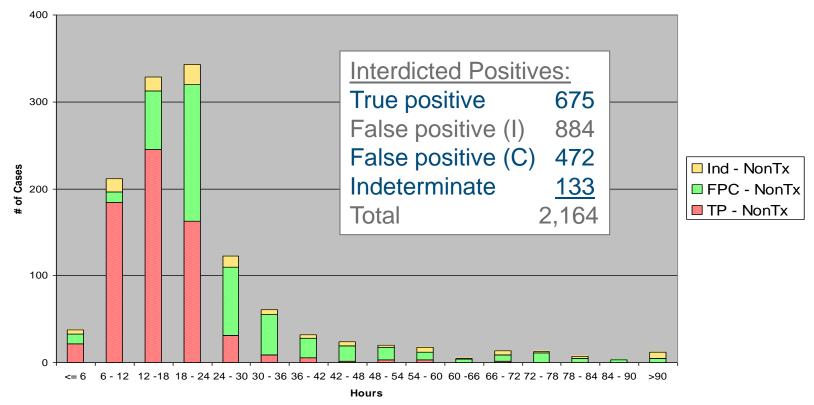
| Positive cultures:              | <u>Cases (%)</u> | per 10 <sup>6</sup> collections |
|---------------------------------|------------------|---------------------------------|
| Confirmed positive              | 677 (29)         | 198 (1: 5,061)                  |
| False pos (instrument)          | 924 (40)         | 270 (1: 3,708)                  |
| Unconfirmed pos (contamination) | 495 (21)         | 144 (1: 6,922)                  |
| Indeterminate                   | 236 (10)         | 69 (1: 14,519)                  |
| Total Positive                  | 2,332 (100)      | 681 (1: 1,469)                  |



| Bacterial Contaminant              | Confir<br>posit |    | %     |  |
|------------------------------------|-----------------|----|-------|--|
| Likely Skin Organisms              |                 |    | %     |  |
| Staphylococcus, coagulase negative | 271             |    | 40.2% |  |
| S. epidermidis                     |                 | 35 |       |  |
| S. lugdenensis                     |                 | 4  |       |  |
|                                    |                 |    |       |  |
| Staphylococcus aureus              | 53              |    | 7.9%  |  |
| Staphylocccus, other               | 15              |    | 2.2%  |  |
| Streptococcus spp.                 | 102             |    | 15.1% |  |
| Viridans Streptococcus sp., NOS    |                 | 44 |       |  |
| $\alpha$ hemolytic Streptococcus   |                 | 18 |       |  |
| S. mitis/oralis                    |                 | 13 |       |  |
| S. salivarius                      |                 | 5  |       |  |
| S. sanguis                         |                 | 3  |       |  |
| Bacillus spp.                      | 15              |    | 2.2%  |  |
| Other*                             | 11              |    | 1.6%  |  |
| Total                              | 467             |    | 69.3% |  |
| Non-skin Organisms                 |                 |    |       |  |
| Streptococcus spp.                 | 71              |    | 10.5% |  |
| β hemolytic Streptococcus          |                 | 25 |       |  |
| S. bovis                           |                 | 25 |       |  |
| S. pneumoniae                      |                 | 7  |       |  |
| Streptococcus pyogenes gp A        |                 | 2  |       |  |
| Escherichia coli                   | 48              |    | 7.1%  |  |
| Klebsiella spp.                    | 29              |    | 4.3%  |  |
| Serratia marcescens                | 23              |    | 3.4%  |  |
| Listeria spp.                      | 10              |    | 1.5%  |  |
| Enterobacter spp.                  | 9               |    | 1.3%  |  |
| Enterococcus spp.                  | 9               |    | 1.3%  |  |
| Citrobacter spp.                   | 3               |    | 0.4%  |  |
| Pseudomonas spp.                   | 2               |    | 0.3%  |  |
| Salmonella spp.                    | 2               |    | 0.3%  |  |
| Other <sup>\$</sup>                | 4               |    | 0.6%  |  |
| Total                              | 210             |    | 31.2% |  |

\* includes Acinetobacter spp. (2), Corynaebacterium spp. (4), Lactobacillus spp (1)., Lactococcus spp. (1), Micrococcus spp. (1), & Proteobacteria spp. (2).
\$ includes Proteus spp. (1), Moraxella spp. (1), Morganella spp. (1), Raoutella spp. (1). Bacterial Species Detected By BacT/ALERT<sup>tm</sup> Culture

<u>Culture Results:</u> 3/1/2004 – 12/31/2011 677 confirmed positives

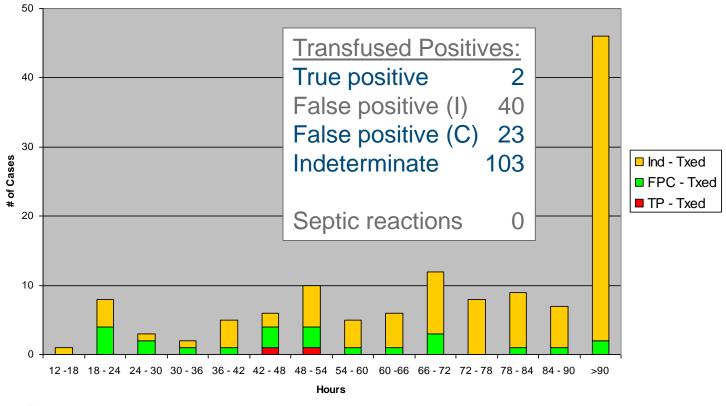

Skin organisms 69.3%

| Staph. spp. | 51.3% |
|-------------|-------|
| Strep. spp. | 25.6% |
| Gram neg.   | 18.0% |

#### BacT/ALERT does not Prevent Transfusion of All Culture Positive Components Tested

3/1/2004 - 12/31/2011

2,332 initial culture positive collections

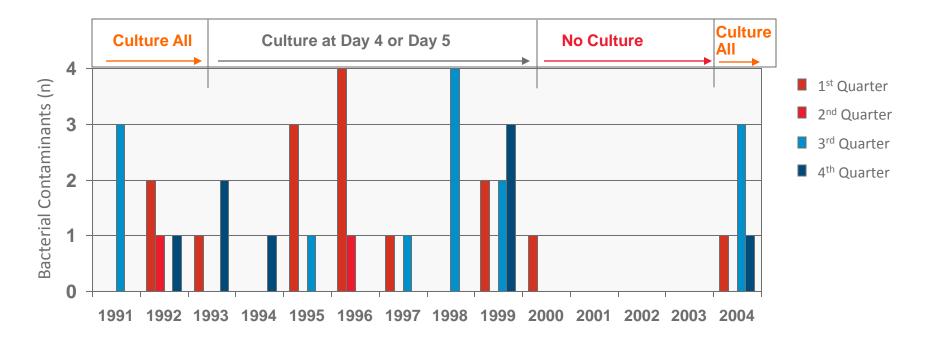





1280 potentially harmful products interdicted

#### BacT/ALERT does not Prevent Transfusion of All Culture Positive Components Tested

3/1/2004 – 12/31/2011 2,332 initial culture positive collections




American<br/>Red Cross128 of 1408

128 of 1408 (9.1%) of potentially harmful units not interdicted

#### Active and Passive Surveillance for Bacterial Contamination

216,283 Units (48,067 SDP and 168,216 RDP)

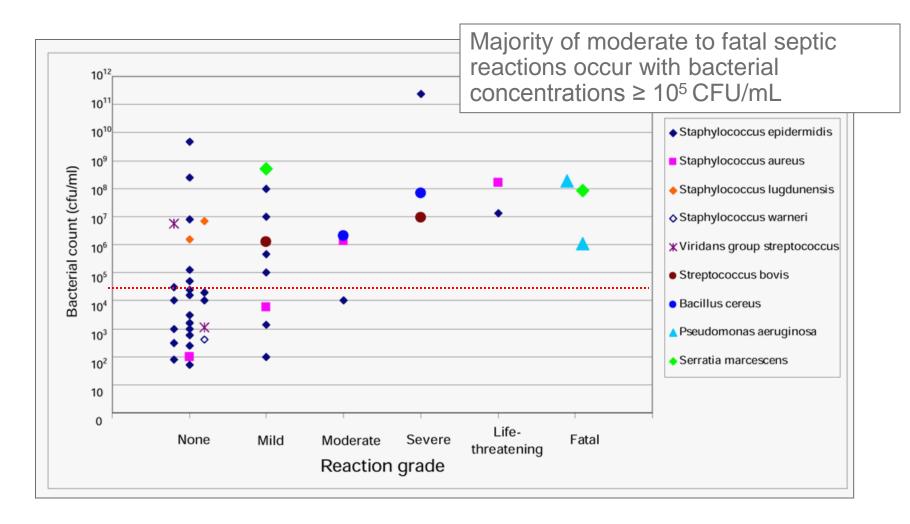


Yomtovian RA et al, Transfusion 2006



- Active surveillance detected 38 contaminated units
- During active surveillance 16 septic reactions were detected, while only 2 reactions were detected during passive surveillance

#### Active versus Passive Surveillance for Bacterial Contamination


#### Bacterial culture at issue 1991-2006

| Surveillance  | Active             | Passive              | Odds Ratio  |  |
|---------------|--------------------|----------------------|-------------|--|
|               | (n=102,998)        | (n=135 <i>,</i> 885) | (95% C.I.)  |  |
| Bacterial     | <b>50</b> 1: 2,060 | <b>2</b> 1: 67,942   | 32.0        |  |
| contamination | 50 1.2,000         | Ζ 1.07,942           | (8.0-135.0) |  |
| Clinical      | <b>16</b> 1:6,437  | <b>2</b> 1:67,942    | 10.6        |  |
| Reactions     | <b>LO</b> 1.0,437  | <b>Z</b> 1.07,942    | (2.4-45.9)  |  |
| Death         | 1                  | 1                    | 1.3         |  |
| Death         |                    | L                    | (0.01-21.1) |  |



Jacobs M, Yomtovian R. CID 2008:46,1217

## Reaction Severity vs. Bacterial Concentration



American Red Cross

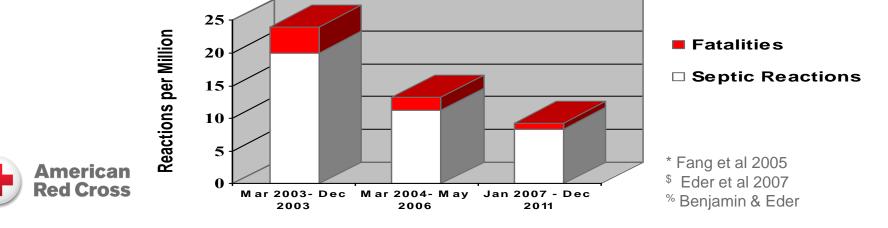
#### Jacobs MR et al. Clin Inf Dis 2008

#### International Experience with BacT/ALERT Culturing

| Reference           | Year<br>published | apheresis | Buffy coat<br>WB platelets | PRP WB<br>platelets | Country | Diversion | Skin Prep  | Delay<br>before<br>sampling | aerobic<br>cultures | anaerobic<br>cultures | volume (ml)<br>per bottle | Number<br>tested | Confirmed<br>positive<br>rate (10 <sup>6</sup> ) |
|---------------------|-------------------|-----------|----------------------------|---------------------|---------|-----------|------------|-----------------------------|---------------------|-----------------------|---------------------------|------------------|--------------------------------------------------|
| Jenkins et al       | 2011              | x         |                            |                     | Canada  | 100%      | IPA/TI/ChI | 24-48                       | х                   |                       | 4-10                      | 210,554          | 128                                              |
| Souza et al         | 2012              | Х         |                            |                     | USA     | 100%      | Chloro (1) | 24-36                       | Х                   |                       | 8                         | 180,263          | 139                                              |
| Su (5d)             | 2008              | Х         |                            |                     | USA     | 91%       | Chloro (1) | 24-36                       | Х                   |                       | 4-5                       | 191,521          | 157                                              |
| Eder et al          | 2009              | х         |                            |                     | USA     | 100%      | PI (2)     | 24-36                       | Х                   |                       | 8-10                      | 781,936          | 166                                              |
| McDonald et al      | 2012              | х         |                            |                     | England | 100%      | Chloro (1) | 36-48                       | Х                   | х                     | 8 (x 1-3)                 | 144,964          | 179                                              |
| Eder                | 2007              | Х         |                            |                     | USA     | 39%       | PI (2)     | 24-36                       | Х                   |                       | 4-5                       | 1,004,206        | 185                                              |
| Dumont et al        | 2009              | Х         |                            |                     | USA     | 99%       | ?          | 24-36                       | Х                   | х                     | 4-5                       | 388,903          | 231                                              |
| Pearce et al        | 2010              | х         |                            |                     | Wales   | 100%      | Chloro (1) | >16                         | Х                   | х                     | 8-10                      | 17,235           | 348                                              |
| Schrezenmeier et al | 2007              | х         |                            |                     | Germany | 100%      | IPA (2)    | 18                          | Х                   | х                     | 7.5-10                    | 15,198           | 855                                              |
| Murphy et al        | 2008              | х         |                            |                     | Ireland | 100%      | ?          | > 12                        | Х                   | х                     | 7.5-10 (1-3x)             | 12,823           | 312                                              |
| Larsen              | 2005              | х         | х                          |                     | Norway  | ?         | ?          | 3-24                        | Х                   |                       | 5-10                      | 36,896           | 325                                              |
| Murphy et al        | 2008              |           | х                          |                     | Ireland | 100%      | ?          | >36                         | Х                   | х                     | 7.5-10                    | 30,407           | 329                                              |
| Jenkins et al       | 2011              |           | х                          |                     | Canada  | 100%      | IPA/TI/Chl | 24-48                       | Х                   |                       | 8-10                      | 228,142          | 127                                              |
| Pearce et al        | 2010              |           | х                          |                     | Wales   | 100%      | Chloro (1) | 24                          | Х                   | Х                     | 8-10                      | 37,594           | 771                                              |
| Schrezenmeier et al | 2007              |           | х                          |                     | Germany | 100%      | IPA (2)    | 18                          | Х                   | х                     | 7.5-10                    | 37,045           | 648                                              |
| McDonald et al      | 2012              |           | х                          |                     | England | 100%      | Chloro (1) | 36-48                       | Х                   | х                     | 8                         | 26,007           | 731                                              |
| Munksgaard          | 2004              | X (1,296) | х                          |                     | Denmark | 0%        | Chloro (2) | 3-30                        | Х                   |                       | 10                        | 22,057           | 771                                              |
| Jenkins et al       | 2011              |           |                            | Х                   | Canada  | 100%      | IPA/TI/Chl | >24                         | х                   |                       | 7.5-10                    | 51,151           | 176                                              |
| Benjamin et al      | 2008              |           |                            | х                   | USA     | 100%      | PI (2)     | 24-36                       | Х                   |                       | 8-10                      | 20,725           | 965                                              |



# International Experience with BacT/ALERT Culture (Confirmed Positive)




Open symbol: Aerobic bottle only Solid symbol: An/Aerobic bottles



#### Declining Risk of Sepsis in the Red Cross

|                     | Before<br>Culture*        | Diversion &               |                           |
|---------------------|---------------------------|---------------------------|---------------------------|
|                     | March 2003-<br>Dec 2003   | March 2004-<br>May 2006   | Jan 2007–<br>Dec 2011     |
| Components          | ~500,000                  | 1,496,134                 | 4,063,371                 |
| Septic<br>Reactions | 12 reactions<br>~1:40,000 | 20 reactions<br>~1:75,000 | 38 reactions ~1:107,000   |
| Deaths              | 2 fatalities ~1:250,000   | 3 fatalities ~1:500,000   | 4 fatalities ~1:1,016,000 |



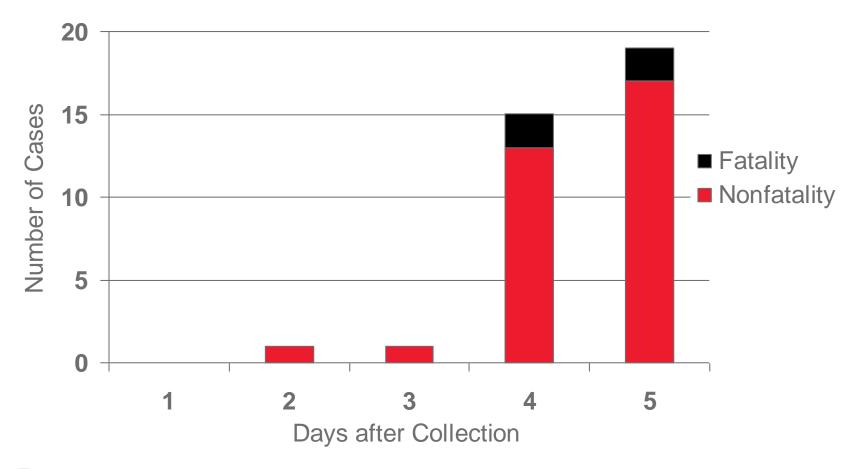
# Considerations Regarding the Estimation of Sepsis Rates by Hemovigilance

- Rates are determined by distributed, not transfused components
- Rates do not include reactions that don't meet the definition of definite or probable sepsis
  - 38 of 381 suspected sepsis cases in our hemovigilance program met the definition of definite or probable sepsis
  - 8 of 46 (17.4%) bacterially contaminated transfusions described by Jacobs et al met our definition of sepsis
- Rates are determined by passive hemovigilance and likely underestimate risk due to underreporting
  - Jacobs et al suggest a 10.6 fold underreporting of <u>clinical</u> <u>reactions</u> by passive hemovigilance.



Jacobs M, Yomtovian R CID 2008:46,1217

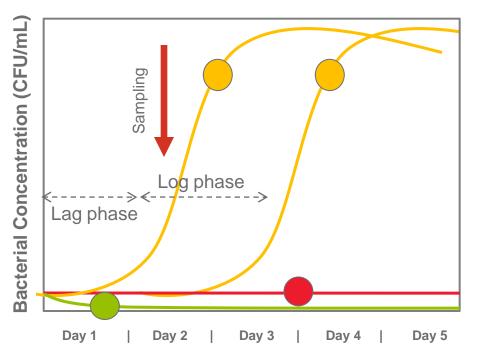
# Bacterial Species Involved in Sepsis (2007-2011)


|                                   | Septic reactions | (%) | Confirmed positive | (%)   |
|-----------------------------------|------------------|-----|--------------------|-------|
| Coagulase-negative Staphylococcus | 22               | 58% | 139                | 33.7% |
| Streptococcus spp.                | 4                | 11% | 126                | 30.5% |
| Staphylococcus aureus             | 8                | 21% | 39                 | 9.4%  |
| Bacillus spp.                     |                  | 0%  | 6                  | 1.5%  |
| Corynebacterium spp.              |                  | 0%  | 3                  | 0.7%  |
| Micrococcus spp.                  |                  | 0%  |                    | 0.0%  |
| Enterococcus spp.                 |                  | 0%  | 4                  | 1.0%  |
| Clostridium perfringens           | 1                | 3%  | 0                  | 0.0%  |
| E. coli                           |                  | 0%  | 32                 | 7.7%  |
| Klebsiella spp                    | 1                | 3%  | 20                 | 4.8%  |
| Listeria spp                      |                  | 0%  | 5                  | 1.2%  |
| Proteus mirabilis                 |                  | 0%  | 1                  | 0.2%  |
| Serratia spp.                     |                  | 0%  | 15                 | 3.6%  |
| Pseudomonas spp.                  |                  | 0%  | 2                  | 0.5%  |
| Citrobacter spp.                  |                  | 0%  | 2                  | 0.5%  |
| Haemophilus spp.                  |                  | 0%  |                    | 0.0%  |
| Salmonella spp.                   |                  | 0%  | 2                  | 0.5%  |
| Enterobacter spp.                 | 1                | 3%  | 8                  | 1.9%  |
| Other                             | 1                | 3%  | 9                  | 2.2%  |
| Total                             | 38               |     | 413                |       |



4 fatalities involving *S. aureus* (3) and Coag. Neg. Staph. (1)

#### Septic Reactions – Day of Storage


38 Definite/Probable Septic reactions, Apheresis Platelets, 2007-2011



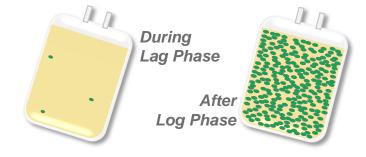
American Red Cross

American Red Cross Hemovigilance Program

#### Why Do Early Cultures Fail?



Platelet unit self sterilizes making bacteria non-viable

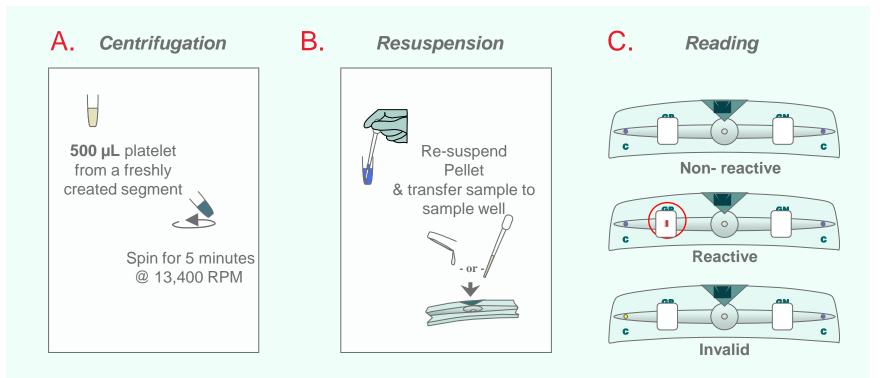



Bacteria persist at low concentrations throughout the platelet shelf life



Bacteria moves from period of *lag phase* to *log phase* of growth

- BacT/ALERT is validated to detect bacteria at 1-10 CFU/ml
- Initial inoculum ~0.01 CFU/mL
- 24-36 hr delay in sampling to allow bacterial proliferation




#### What Risk Data Should We Use for Bacteria?

- Passive hemovigilance data of sepsis
- Active surveillance data on contamination
  - Jacobs MR et al, Transfusion 2011 Dec;51(12):2573-82
  - PASSPORT, Irish and Welsh Blood Service studies
- Best calculated assessment of patient risk exposure



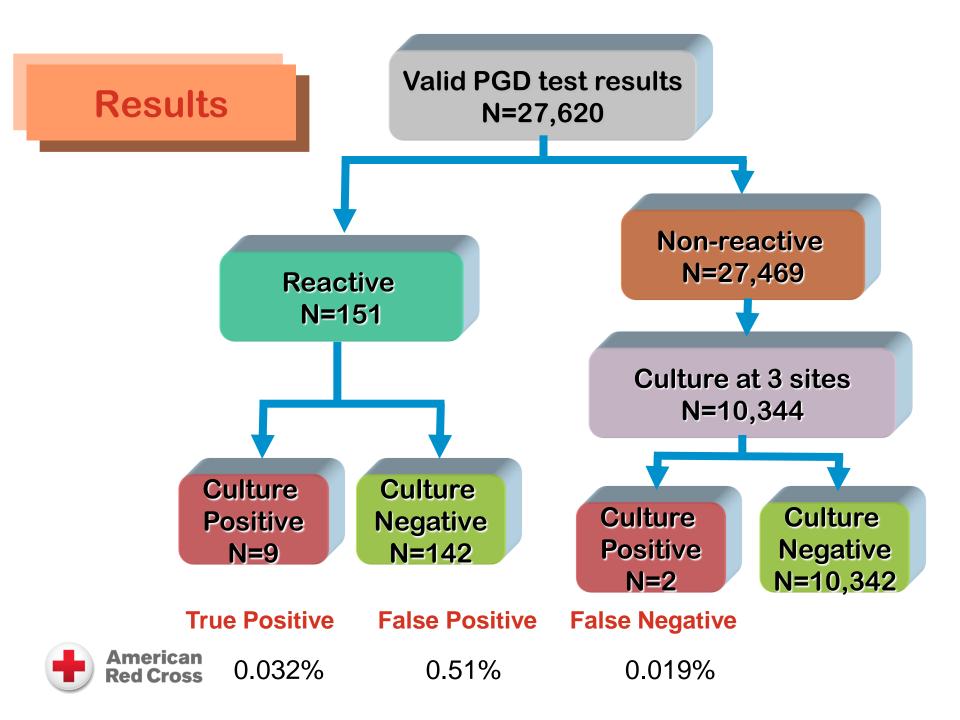
#### The Verax Platelet PGD Test Procedure



Performed on the day of transfusion by Transfusion Service/Hospital Blood Bank



Sensitivity >10<sup>4-5</sup> CFU/ml


## Verax PGD: Surveillance at Point of Issue

- Jacobs MR et al Transfusion 51:2573-82, 2011
- Apheresis platelets tested at blood center with either eBDS or BacT/Alert cultures
  - 18 hospital sites
  - 9 confirmed positives in 27,620 components tested
  - Detected on days 3 (4); 4 (2) and 5 (2)
  - 6 CNStaph, 2 Bacillus sp.; 1 Enterococcus; 1 P. acnes
  - Risk of contamination: 326 per million (1:3,069)

Despite culture testing, a substantial number of platelets contain high levels of pathogenic bacteria as early as day 3 after collection



Analytical sensitivity ~103-105 cfu/ml, tested on days 3, 4 & 5



#### Bacterial Residual Risk at Outdate, after BacT/ALERT Screening

|                   | #<br>Tested | Confirmed<br>Positives | Rate per<br>million | Sensitivity<br>of Day 1<br>Test | Reference            |
|-------------------|-------------|------------------------|---------------------|---------------------------------|----------------------|
| PASSPORT          | 6,039       | 4                      | 662<br>(1:1,509)    | 25.9%                           | Dumont et al<br>2010 |
| Irish BS<br>Day 8 | 8,282       | 18                     | 2,200<br>(1:460)    | 29.2%                           | Murphy et al<br>2008 |
| Irish BS<br>Day 4 | 3,310       | 4                      | 1,200<br>(1:828)    |                                 | Murphy et al<br>2008 |
| Welsh BS          | 6,438       | 6                      | 931<br>(1:1,073)    | 40.0%                           | Pearce et al<br>2011 |
| Combined          | 24,069      | 32                     | 1,329<br>(1:752)    |                                 |                      |

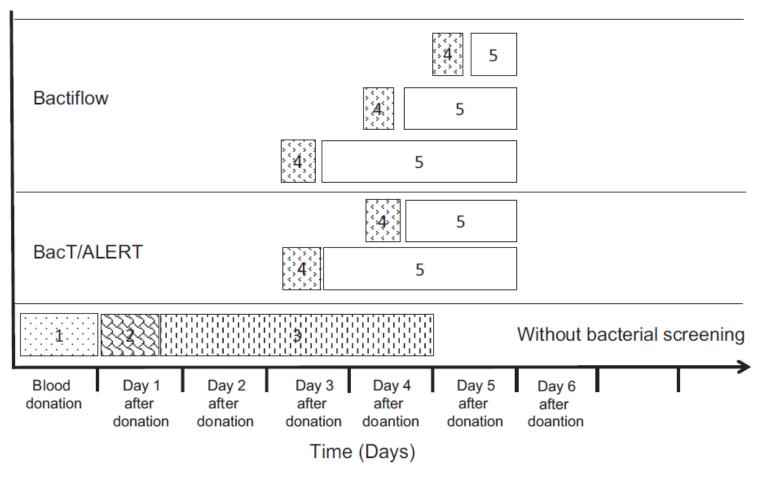
60 - 74% of contaminated collections are missed by day 0/1 culture BacT/ALERT has an analytical sensitivity ~10<sup>-1</sup> cfu/ml for aerobes and anaerobes

# Residual Patient Risk of a Contaminated Product, accounting for Multiple Transfusions

|                  | Patients in<br>P.I. Study<br>Arm | Mean # of<br>P.I. Platelets<br>Transfused | Patient<br>Risk* | Upper<br>95% C.I. | Lower<br>95%<br>C.I. | References               |
|------------------|----------------------------------|-------------------------------------------|------------------|-------------------|----------------------|--------------------------|
|                  |                                  | 1.0                                       | 1,329<br>(1:752) | 869<br>(1:1,151)  | 1,790<br>(1:559)     |                          |
| Miracle<br>Study | 56                               | 5.4                                       | 7,177<br>(1:139) | 4,693<br>(1:213)  | 9,666<br>(1:103)     | Goodrich<br>et al 2010   |
| Hovon<br>Study   | 85                               | 4.6                                       | 6,113<br>(1:164) | 3,997<br>(1:250)  | 8,234<br>(1:121)     | Kerkhoffs<br>et al 2010  |
| Sprint<br>Study  | 391                              | 8.4                                       | 11,164<br>(1:90) | 7,300<br>(1:137)  | 15,036<br>(1:67)     | McCullough<br>et al 2004 |
| Combined         | 532                              | 6.3                                       | 8,373<br>(1:119) | 5,475<br>(1:183)  | 11,277<br>(1:89)     |                          |

•Patient risk of receiving a contaminated unit per million patients

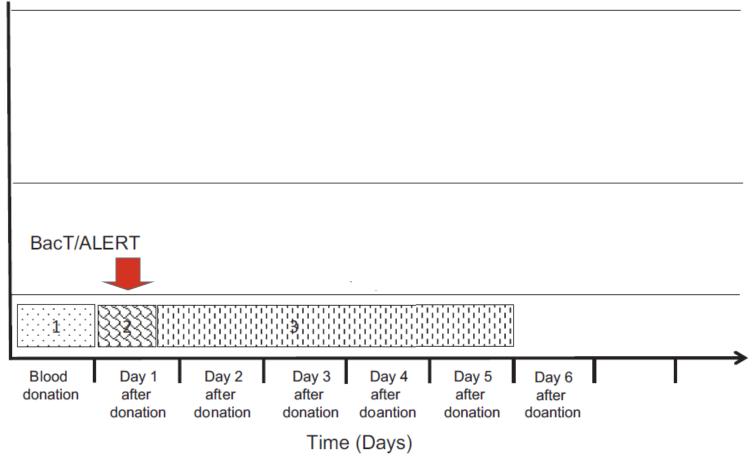
## Best Current Estimate of per Patient Risk


| Combined 53 | 2 6.3 | 8,373<br>(1:119) | 5,475<br>(1:183) | 11,277<br>(1:89) |  |
|-------------|-------|------------------|------------------|------------------|--|
|-------------|-------|------------------|------------------|------------------|--|

There is an approximate 0.8% (0.5-1.1%) risk that a Hematology/Oncology patient will be exposed to a bacterially-contaminated platelet product despite BacT/ALERT culture screening during a course of treatment that might involve pathogen-reduced platelets



R.J. Benjamin, AABB 2010


## Paul Erlich Institute Approach to Sepsis





Sireis et al. Vox Sanguinis 101:191-99,2011

#### FDA Proposal at BPAC





FBA BPAC October 2012

# 104<sup>th</sup> FDA BPAC Meeting: Bacterial Safety

- Q1: Are additional measures necessary to decrease the current risk of transfusion of bacterially-contaminated platelet products?
  - **Vote: YES** 17 √, **0 X**
- Q2: Would reduction in platelet product shelf-life from 5 to 4 days and early culture decrease the risk of transfusion-associated septic reactions sufficiently to obviate the need for additional testing.
  - **Vote:** NO 0 √, 17 X
- Q3: For platelets limited to 5 days of storage do the available data support a strategy to culture platelets after the first 24 hours of storage and then retest day 4 and day 5 platelets just once with a rapid test on day of transfusion?
  - Vote: YES 16 ✓, 1 X, 1 abstain
  - **Q4:** Should the same strategy apply to retesting of day 3 platelets?



104<sup>th</sup> BPAC Meeting, September 20, 2012, Rockville, MD , Issue Summary, "Considerations <sup>28</sup> for Options to Further Reduce the Risk of Bacterial Contamination in Platelets "

MAYBE  $5 \checkmark$ ,  $5 \times$ , 7 abstain

# AABB Recommendations for Bacterial Safety of Platelets (Bulletin #12-04)

 Develop policies to further reduce the residual risk of bacterial contamination of apheresis platelets

 $\rightarrow$  The current screening methodology is not effective

 Improve the recognition and monitoring of septic transfusion reactions (STRs) of all platelet components

#### $\rightarrow$ STRs currently go unrecognized

Optimize appropriate transfusion practice for all platelet components

#### $\rightarrow$ Conduct a risk-benefit analysis and eliminate risk

 "...additional steps to detect bacteria in apheresis platelets should not be needed in facilities located in countries that treat platelets with a regulatory-approved pathogen inactivation (PI) system<sup>1</sup> The PI bacterial sepsis mitigation option is the most definitive approach – but remains unavailable in the United States at this time. Ongoing experience from those countries adopting pathogen inactivation may eventually influence decisions by US policy makers regarding PI."



# **Options to Improve Platelet Safety**

- Minimize contamination
  - Collection with diversion pouch
  - Optimal skin preparation
- Maximize culture sensitivity
  - Consider BacT/ALERT vs. eBDS culture

 $\mathbf{\nabla}$ 

- Delay sampling as long as possible
- Increase volume cultured
- Perform both aerobic & anaerobic culture
- Transfuse earlier rather than later
- Point of issue testing
- Pathogen inactivation



# Summary

- The introduction of bacterial culture testing has identified areas for process improvement and dramatically improved platelet safety.
- Substantial residual risk for sepsis remains and is likely understated by current passive hemovigilance efforts.
- Risk is predominantly from Gram positive organisms following false negative cultures, although other modes of failure have been demonstrated.
- Available technologies, if fully implemented, would further improve platelet safety.

