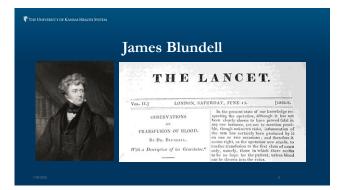
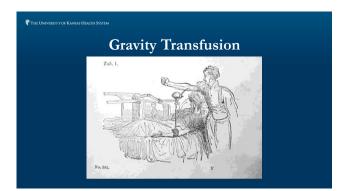


Outline

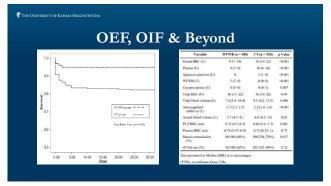

1. Brief History of Whole Blood Transfusion

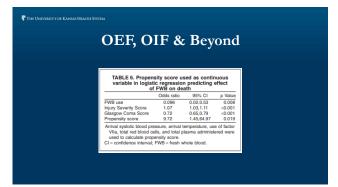

2. Re-emergence of Whole Blood

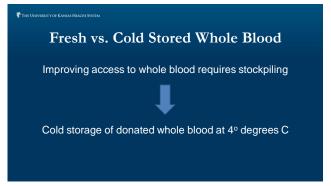
3. Establishing "Universal" Whole Blood

4. Implementation of Whole Blood Transfusion

THE UNIVERSITY OF KANSAS HEALTH SISTEM	
Outline	
Brief History of Whole Blood Transfusion	





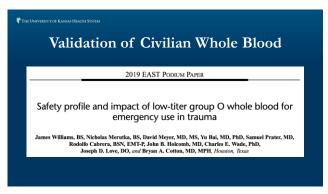


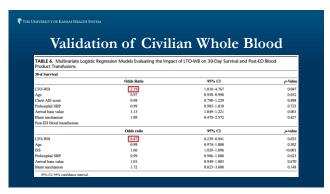
Whole Blood	Components
Single donor source	Multiple donor sources
"Walking blood bank" or Prepared in advance	Prepared in advance
Warm or refrigerated	Multiple storage requirements
Provides platelets	Short platelet lifespan

On Paper: A Superior Resuscitation			
	Whole Blood	Blood Component (1:1:1)	
Hematocrit (%)	33-44	29	
Platelet Count (k/mm³)	150-350	88	
Coagulation Factor (%)	80-90	65	
Volume (ml)	450-600	650	
Shelf Life	21-35 d	RBC 21-42 days Cryo/FFP 12 months Thawed plasma/PLT 5 days	

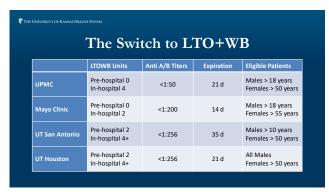
THE UNIVERSITY OF KANSAS HEALTH SYSTEM
Civilian Adoption of Military Trauma Advances
Advances in civilian trauma care are derived from military conflict:
– Triage
 Tactical Combat Casualty Care (TCCC)
 – Massive Transfusion Protocols
 Damage Control Surgery
Could whole blood serve a role in civilian trauma care?

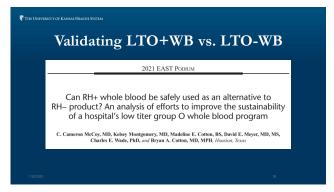
Civilian Resistance to Whole Blood ABO Compatibility & Hemolysis Typical emergency release/universal blood units:			
	Type O Donor Whole Blood	Universal Blood Components	
Red Cells	O Donor	O Donor	
Plasma	O Donor	AB Donor*	
O Donor Plasma Safety? → Low Anti-A, Anti-B Antibody Titers			

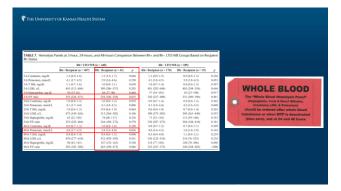

₹ THE UNIVERSITY OF KANSAS HEALTH SYSTEM
Civilian Resistance to Whole Blood
<u>Leukoreduction</u>
Many blood centers provide near-universal leukoreduction
Reduces immune-mediated side effects, disease transmission
How to leuko-reduce whole blood?
→ Platelet-sparing leukoreduction filters

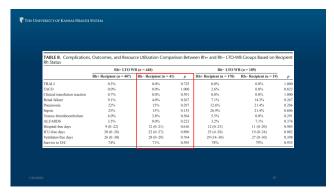

Civilian Resistance to Whole Blood Shelf Life Expiration Red Cells 40+ days Plasma 12 months Cryoprecipitate 12 months Platelets 5 days Whole Blood 21-35 days

THE UNIVERSITY OF KANSAS HEALTH SYSTEM
Outline
3. Establishing "Universal" Whole Blood

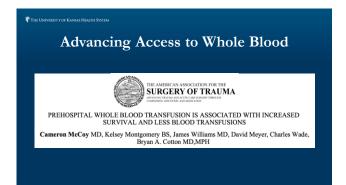

THE UNIVERSITY OF KANSAS HEALTH SYSTEM				
Whole Blood Re-	Enter	s Civi	liar	Medicine
TABLE 5. Sensitivity Secondary Outcom TBI				
	WB Group (n = 33)	COMP Group (n = 34)	P	
Median 24-hr RBC transfusions. U	4 (2, 6)	6 (2, 13)	0.02	
Median 24-hr plasma transfusions. U	4 (2, 7)	6 (2, 14)	0.02	
Median 24-hr platelet transfusions. U	0 (0, 1)	1 (0, 2)	0.09	
Median 24-hr total transfusions, U	11 (5, 17)	16 (4, 41)	0.02	
24-hr mortality, % 30-d mortality, %	6% 6%	9% 9%	0.62 0.62	
Continuous values are	presented as median wi	th 25th and 75th interqu	artile range.	

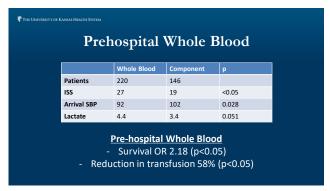




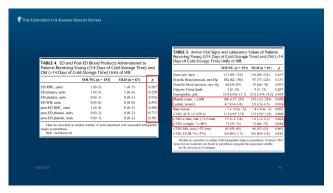

THE UNIVERSITY OF KANSAS HEALTH SYSTEM
A "Universal" Resuscitation
Low Titer O Negative Whole Blood "LTO-WB"
Type O → → → Universal ABO compatibility
Rhesus Negative → → → No alloimmunization
Low Titer → → → Minimized anti-A/B antibodies

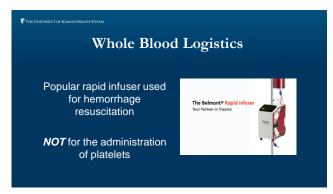
₹ THE UNIVERSITY OF KANSAS HEAZITE SYSTEM	
LTO-WBNot Sustainable	
Type O Negative = Not sustainable - Narrow donor pools - Competition with other O Neg products	
Type O Positive = Risk of alloimmunization - Females of child-bearing age - Pediatric patients	

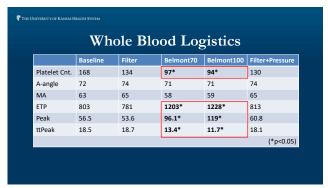


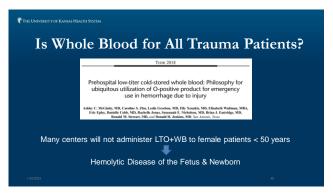


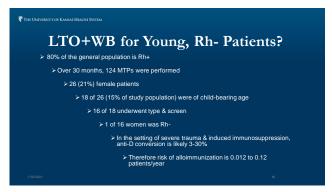
The Switch to LTO+WB... The New "Universal"?

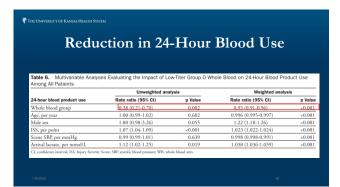

- Performance in prehospital resuscitation
- Shelf life & coagulation performance
- Logistics compared to component MTP
- Safety across all trauma patients

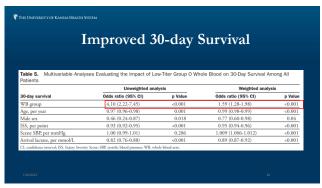

38






Age of Whole Blood Matters AAST 2020 PODIUM PAPER The prehospital use of younger age whole blood is associated with an improved arrival coagulation profile Thomas Clements, MD, Cameron McCoy, MD, Scott Assen, MD, Jessica Cardenas, PhD, Charles Wade, PhD, David Meyer, MD, and Bryan A. Cotton, MD, MPH, Houston, Texas





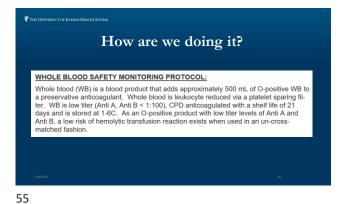
Future Considerations Can Whole Blood serve as the civilian trauma resuscitation of choice? → Is WB feasible for other healthcare systems? → What other modalities are competing with WB?

Future Considerations

Whole Blood Feasibility

Cost compared to components?

Sustainability across US healthcare systems?


- Critical access, rural locations

- Prehospital access to whole blood

52

Future Considerations Will whole blood find applications outside trauma? → Non-traumatic hemorrhagic shock → GI bleeding → Obstetric hemorrhage → Elective surgical bleeding

How are we doing it?

Serial hemolysis labs must be obtained on all patients who receive whole blood:

Whole Blood Hemolysis Monitoring Laboratory Panel:

- Labs:

- Labs:
- Haploglobin
- Total & Direct Blimbin
- Oreating yeogramsia (LDH)
- Creating yeogramsia (LDH)
- Creating yeogramsia (LDH)
- Patewill be ordered:
- Direct will be respected in the procession of the theory of the procession of the proces

56

How are we doing it?

→ Trauma 1 Protocol is an easy starting point...3 units

→ Establish provider comfort with use and institutional safety data in a well-known population (adult male trauma patients)

→ Once established, discuss expansion of inclusion criteria and other patient populations/service lines

Conclusions → Whole blood is an old therapy with new interest → LTOWB has demonstrated improved blood utilization, earlier access to balanced transfusion and improved patient outcomes → Universality will require overcoming age/gender barriers and establishing feasibility across systems

58

