Partial D & Weak D Picking Up the Rhesus Pieces

Heart of America Association of Blood Banks April 24, 2012

Susan T. Johnson, MSTM, MT(ASCP)SBB Director, Clinical Education BloodCenter of Wisconsin

Objectives

- List the reasons for RhD typing discrepancies
- Discuss the biochemical and molecular characteristics of RhD & RHD
- Understand the differences among partial, weak, D_{el} variants and D epitopes on RhCe protein
- Describe the advantage of a molecular resolution of Rh discrepancies

Rh DESIGNATION

Rh Positive 85%

Rh Negative 15%

RhD Typing Discrepancies

- RhD antigen expression
 - RHD gene mutations
- Reagent differences
- Method variability

Variables Impacting Rh Typing

CONTRIBUTORS			VARIABLES		
OF VARIABILITY					
RHD Gene	Weak D	C in Trans	Partial D	D _{el}	
		to RHD			
D epitopes on	ceCF	R ₀ ^{Har} or DHAR			
RhCE Protein					
Anti-D Reagents	Polyspecific	Monoclonal	Monoclonal	Monoclonal	Monoclonal
	Slide and	lgG	lgM	lgM	Blends
	Modified Tube			Human IgG	
	Human IgG			Tuttian igo	
Testing Platform	Test Tubes	Column	Solid Phase	Liquid	
	IS & IAT	Agglutination		Microtiter	
Individual being	Transfusion	Obstetrical	Cord Blood	Donor Blood	
Rh Typed	Recipient	Patient			

Transfusion Technology Report Vol. #013 Immucor, Inc.

What is D?

Rh DESIGNATION

http://www.jic.ac.uk/corporate/about/publications/advances/images_10/protein.jpg

Rh (D) Negative

Deletion of RHD – in European ancestry

- Inactivating mutations of RHD
 - $RHD\psi$ in African Americans

• Hybrid RHD-CE-D in African backgrounds

RH Genes in Rh Negative Caucasians Chromosome 1

No D antigens

ce antigens

Locus 1 deletion of *RHD* therefore, no D antigen.

Rh (D) Negative – African Background

19% *RHD* deletion
66% *RHDψ*19% Hybrid *RHD-CE-D*

RH Genes in Rh Negative - African Background

Exons

No D antigen

Exons

C/c and E/e antigens

Locus 1 – 37 bp insertion & several mutations in *RHD* results in no product

66% of AAs have $RHD\psi$

No D antigen

C/c and E/e antigens

Locus 1 – *RHCE* inserted in *RHD* results in no D antigen and weak C.

15% of AAs have hybrid RHD-CE-D

What About Weak Expression of D?

WEAK EXPRESSION OF RhD HISTORY

- D^u
- D mosaics
- Weak D general term used
- Partial D
- Weak D
 - Specific group of RhD variants
- D-elution alleles

WEAK D HISTORY

- Described by Stratton (1946)
- D antigen not detected by all anti-D
- Mistakenly called the D^u antigen
 - D^u+ blood to a D- person causes production of *anti-D not anti-D^u*

WEAK D Reactivity with Anti-D

Agglutinated with some anti-D on direct agglutination (IS)

- Negative on direct agglutination (IS)
 - D antigen detected by IAT only

Frequency of Weak Expression						
Hopkins	Scotland	0.56%				
Garretta	France	1974	0.66%			
Beck	USA	1990	0.2%			
Jenkins	USA	2004	0.4%			
Flegel	Germany	2006	0.4%			

WEAK D Variation in RhD Expression

Do not make anti-D

• Able to make anti-D

Weak Expression of D Do Not Make Anti-D

- C in *trans* with *RHD* (Ceppellini effect)
 - r' haplotype
- Weak D "Types": single amino acid changes
- Weak D Type 2
 - Very weak(+) when in trans with r'

Ceppelini Effect

Weak D Types Do Not Make Anti-D

- Missense mutations in regions of *RHD* encoding transmembrane/cytoplasmic portion of D
- Less protein inserted into RBC membrane
- Can type as Rh-positive or Rh-negative by direct agglutination with monoclonal (IgM) anti-D reagents

	IS			IS	D IAT	Ct. IAT
Anti-D	3+	or	Anti-D	0	3	0

Some Weak D Types

Molecular Basis of Weak D

Weak D Types 1 and 2

- Most common weak D types
- Weak D Type 1
 - R₁r (D+C+E-c+e+)
- Weak D Type 2
 - R₂r (D+C-E+c+e+)

D Antigen Copy Number

BLOODCENTER of wisconsin[™]

G Denomme

Weak Expression of D Able to Make Anti-D

- Partial Ds: hybrid RHD alleles
 - DVI
 - DIIIa
 - DIVa, DIVb, others
- D_{el}: detection by adsorption/elution
- D epitopes on RHCE gene

RHESUS PIECES

PARTIAL D

- Partial D
 - Lack exofacial epitopes
 - Hybrid proteins
 - Missense mutations affecting exofacial protein

CM Westhoff

Anti-D 0 3 0 Or Anti-D 3+		IS	D IAT	Ct. IAT			IS
	Anti-D	0	3	0	or	Anti-D	3+

BLOODCE

of wisconsin™

PARTIAL DVI

One example of Partial *DVI* gene where 3 exons of *RHCE* gene are inserted into *RHD* gene.

	IS	D IAT	Ct. IAT
Anti-D	0	3	0

D_{el}

Type as D-negative (IS & IAT), only adsorb & elute anti-D
Severely reduced protein

•2 individuals have made anti-D after receiving D+ blood

Deletion of exon 9 in Asians occurs in 10-30%

D Epitope on RHCE Genes

Crawford (ceCF) phenotype

• R_0^{Har} , also known as D^{HAR}

D Epitope on RHce Gene - DCF

Anti-D Reagents: Reactions with Crawford Phenotype RBCs

	An	RBCs	
Reagent	lgM	lgG	Crawford
GammaClone	GAMA401	F8D8	Pos
Immucor-4	MS201	MS26	Neg
Immucor-5	TH28	MS26	Neg
Ortho Bioclone	MAD2	Human polyclonal	Neg
Ortho (ID-MTS)	MS201		Neg

Reactive clones in some European reagents: RUM-1, D175-2, F5S, H2D5D2F5, MCAD-6

Exons

No D antigens

ce antigens

DHAR results from one RHD exon inserted into the RHCE gene.

	IS
Anti-D	3+

R₀^{Har} **Phenotype: Reactivity with Reagent Anti-D**

	Ant	RBCs	
Reagent	lgM	lgG	R_0^{Har}
Gamma-Clone	GAMA401	F8D8	Pos*
Immucor-4	MS201	MS26	Pos*
Immucor-5	TH28	MS26	Pos*
Ortho Bioclone	MAD2	Human polyclonal	Neg
Ortho (ID-MTS)	MS201		Pos
Biotest (Bio-Rad)	BS232	BS221 H41 11B7	Pos
Quotient - Alpha	LDM1		Pos
Quotient - Delta	LDM1	ESD1M	Pos

BLOOD

*Positive reactions often weaker at IAT

MoAb Anti-D's

Method	Manufacturer	lgM	lgG
Tube	Ortho	MAD2	Human
Tube	Gamma	GAMA 401	F8D8
Tube	Immucor-4	MS201	MS26
Tube	Immucor-5	Th28	MS26
Tube	Alba(Quotient BD) alpha	LDM1	
Tube	Alba (Quotient BD) delta	LDM1	ESD1M
Tube	Biotest (Bio-Rad)	BS232	BS221 H41 11B7
Gel	ID-MTS	MS201	

MONOCLONAL IgM/IgG ANTI-D

MONOCLONAL IgM/IgG ANTI-D #1 Weak D Test - IAT

MONOCLONAL IgM/IgG ANTI-D #2

Confusion Over Weak Expression of D

Donor	Rh+
Recipient	Rh-
Prenatal	RhIG?
Newborn	Postpartum RhIG?
Autologous Donor	@#!&*~?

Reasons to Resolve Weak Expression

- Conserve Rh-negative blood for Dnegative recipients (high risk of making anti-D).
- Avoid giving RhIG to women who do not need it (Rh status is confirmed for historical discrepancies)
- Resolve early in pregnancy to eliminate false-positive rosette tests.

Rh Discrepancies - MSH, Toronto Discrepancy between two anti-D direct tests

- 33,864 RhD phenotypings performed over an 18 month interval
- 55 of 5672 potential Rh-negative patients were tube test positive for one anti-D (0.98%)

≻54 were tube test negative using one FDAapproved reagent but positive (2+ or less) using another government approved antisera

Summary of the Toronto Study

20 functional *RHD* alleles detected; 1 wildtype (HDN)

- 34 Weak D Types (PCR-RFLP):
 - 16 weak D Type 1 8 weak D Type 2
 - 1 weak D Type 3 6 weak D Type 4
 - 1 weak D Type 5 2 weak D Type 42
- 7 DAR (exon mapping plus sequencing)
- 6 D^{Va} or D^{Va}-like alleles:
 - 3 DVa(Kou.) 1 DVaHK(E233K) 1 DVa-like 1 DTO (Novel)
- DFR, DAU-4, DAU-5 (Novel), DAU-6 (Novel)
- DAR/DAU-2, DAU-0/Cde^s (compound heterozygotes)
- 1 not identified (possible DIIIa, DVa, DAR, DOL)

57% were Weak D types 1, 2, 3 and 4

Impact if deemed Rh-negative

Inappropriate use of blood products

RHD Allele	OB	TR	NB	Impact		
Weak D Types 1–4	12	8	5	12 OB patients received Rhig 4 transfusion recipients received 12 Rh-neg RBCs		
Weak D Type 42	1	1	-	OB patient received Rhig Transfusion recipient received 11 Rh-neg RBCs		
				Total: 21 RhIG 23 Rh-negative RBCs		
DAR	3	1	3	3 OB patients received Rhig Potential transfusion recipient was not transfused.		
DVª and DVª-like	1	1	5	1 OB patient an delivered an Rh-neg infant Potential transfusion recipient not transfused		
DAU, DFR, DTO	3	2	2	2 OB patient delivered an Rh+ infant Neither potential transfusion recipient transfused		
				Total: 7 Rhig 0 Rh-negative RBCs		

Summary of Alberta Study

Analysis '07 - '08 = 88,972

DNA Typing Results	# of Patients	Rh Status Assigned	RHIG Recommended	% of DNA Results Received
Weak D Type 1	60	Pos	Νο	29.0
Weak D Type 2	19	Pos	Νο	9.2 64%
Weak D Type 3	38	Pos	Νο	18.4
Weak D Type 4	15	Pos	Νο	7.2
DAR	2	Neg	Yes	1.0
Partial DVI Type I	3	Neg	Yes	1.3
Partial DVI Type II	1	Neg	Yes	^{0.5} 36%
DVI Type II	2	Neg	Yes	1.0
DVa partial	1	Neg	Yes	0.5
Partial DVA-like	1	Neg	Yes	0.5
Unclassified	65	Neg	Yes	31.4
Pending	2	TBD	TBD	
TOTAL	209	(0.23% of total)	

Monoclonal Anti-D Panel

	Expected patterns of reactivity of different forms of partial D with the different monoclonal anti-D antibodies										Test results								
Anti-D cell line	Weak D type 1&2	DII & DNU	DIII	DIV	DV	DCS	DVI	DVII	DOL	DFR	DMH	DAR	DAR- E	DHK & DAU-4	DBT	Ro ^{Her}	Pos Cont	Neg Cont	Pt
LHM76/58	÷	+	+	+	+/0	+	0	+	+	+	+	+	0	0	0	(+)/0	4	0	0
LHM76/59	+	+	+	0	+	+	+	+	+	÷	+	+	+	+	0	0	4	0	3
LHM174/102	(+)/0	+	+	0	0	+	0	+	0	0	+	0	0	0	0	0	4	0	0
LHM50/28	+	+	+	+	+	+	0	+	+	+	+	+	+	+	0	0	4	0	0
LHM169/81	+	+	+	0	0	+	0	+	+	÷	+	0	0	0	0	0	4	0	0
ESD1	+	+	+	0	+	+	+	+	+	+	+	+	+	+	0	0	4	0	4
LHM76/55	+	+	+	0	+	+	+	+	+	+	+	+	+	+	0	0	4	0	3
LHM77/64	+	0	+	0	+	+	+	+	+	+	+	+	+	+/0	0	0	4	0	3
LHM70/45	(+)/0	+	+	0	0	0	0	+	0	0	0	0	0	0	0	0	4	0	0
LHM59/19	+	+	+	+	+	+	0	0	0	0	(+)	0	(+)	÷	+	0	4	0	0
LHM169/80	+	+	+	+	+	+	0	+	+	÷	+	+	+	0	0	0	4	0	0
LHM57/17	÷	+	÷	+	+	0	0	+	+	0	+	+	0	0	+	0	4	0	0

Interpretation: DVI

Bagene Weak D Worksheet

Worksheet und Auswertetabelle / Worksheet and Evaluation diagram

	Reaktions-Nr. / Reaction No.	1	2	3	4	5	6	7	8
	PCR-Produkt (Größe in bp) PCR product (size in bp)	150	126	165	101	130 83	112	198 83	153
			weak	D Allele	l weak D a	lleles			
	weak D type 1	+	-	-	-	-	-	-	-
	weak D type 2	-	+	-	-	-	-	-	-
	weak D type 3	-	-	+	-	-	-	-	-
	weak D type 4.0, 4.1	-	-	—	+	_	-	-	-
	weak D type 4.2, DAR	-	-	-	+	130	-	-	-
	weak D type 5	-	_	-	-	_	+	-	-
	weak D type 11 (haplotype cDe)	-	-	_	-	-	-	198	-
	RHD(M295I) (haplotype CD _{el} e)	-	-	_	_	_	-	198	-
>	weak D type 15	-	-	_	_	-	-	-	+
	weak D type 17	-	-	_	_	83	-	83	-
	weak D type 4.2, 17	-	-	-	+	130 83	-	83	-
	Weak D type 11 / <i>RHD</i> (M295I), 17	-	-	-	-	83	-	198 83	-
	RHD pos. oder / or RHD neg.	-	-	-	-	-	-	-	-

Genotyp Genotype	1	2	3	4	5	6	7	8

Investigation strategy for RhD typing discrepancies using a combination of PCR-SSP and serological techniques Lay See Er, MSTM, (ASCP)SBB

 <u>http://www.aabb.org/development/aw</u> <u>ardsscholarships/scholarships/Pages/</u> <u>pastwinners.aspx</u>

Bagene Weak D Kit Results

Lane 2: DNA ladder Start reading from lane 3 Lane 1, 11,12: buffer load (no bands) BLOODCE

Bagene Weak D Kit Results

Lane 2: DNA ladder Start reading from lane 3 Lane 1, 11,12: buffer load (no bands) BLOODCE

Summary

 3-5% RhIG doses go to women with Weak D Types

➤How often do you need to switch Rh status?

- Molecular test is a permanent solution
- Weak D Types 1 4 are Rh+ as a recipient and donor
- Informed consent for administration of RhIG?
 - Avoid a blood product where it is not needed!
 - RhIG shortage, new infectious disease

Summary, cont...

- Resolution \$ Molecular Test < RhIG \$
 - Rh allele pop'n frequencies
 - # of pregnancies

Guideline for Interpreting Discordant Rh Typing Results

Rh typing results are evaluated at immediate spin (direct agglutination) and Rh typing is repeated with identical results

If individual	And individual is a	And	Then, consider
types			molecular typing
Rh-negative	Transfusion recipient	Donor record is	Interpret
		Rh-positive	Rh-negative
Rh-negative	Obstetrical patient	Donor record is	Interpret
		Rh-positive	Rh-neg or Rh-pos?
Rh-negative	Post delivery	Donor record is	Perform anti-D IAT*
		Rh-positive	
Rh-negative	Transfusion recipient	Facility history is	Interpret
		Rh-positive	Rh-negative
Rh-negative	Obstetrical patient	Facility history is	Interpret
		Rh-positive	Rh-neg or Rh-pos?
Rh-negative	Post delivery	Facility history is	Perform anti-D IAT*
		Rh-positive	

Modified from Transfusion Technology Report Vol. #013 Immucor, Inc.

Guideline for Interpreting Discordant Rh Typing Results

Rh typing results are evaluated at immediate spin (direct agglutination) and Rh typing is repeated with identical results

If individual	And individual is a	And	Then, consider
types			molecular typing
Rh-positive	Transfusion recipient	Rh Negative at	Type with different
		another facility	anti-D reagent
Rh-positive	Obstetrical patient	Rh Negative at	Type with different
		another facility	anti-D reagent
Rh-positive	Post delivery	Rh Negative at	Type with different
		another facility	anti-D reagent
		(regardless of	
		history)	

Modified from Transfusion Technology Report Vol. #013 Immucor, Inc.

Conclusions

- Rh discrepancies are better resolved using a molecular approach.
 - MoAb approach is erroneous for some partial Ds
 - MoAb approach does not positively identify Weak D Types 1 and 2 and does not address Weak D Types 3, and Weak D Type 4 versus DAR.
- Laboratories who change methodologies or drop the IAT as a routine test on all patients have the appropriate support to resolve historical discrepancies through molecular testing.

Objectives

- List the reasons for RhD typing discrepancies
- Discuss the biochemical and molecular characteristics of RhD
- Understand the differences among partial, weak, and Del variants
- Outline the advantage of a molecular resolution of Rh discrepancies

References

- Wagner FF, Gassner C, Mu[¨] Iler TH, et al. Molecular basis of weak D phenotypes. Blood 1999; 93:385–393.
- Denomme GA, Wagner FF, Fernandes BJ, et al. Partial D, weak D types, and novel RHD alleles among 33 864 multiethnic patients: implications for anti-D alloimmunization and prevention. Transfusion 2005; 45:1554–1560.
- Flegel WA, Denomme GA, Yazer MH. On the complexity of D antigen typing: a handy decision tree in the age of molecular blood group diagnostics. J Obstet Gynaecol Can. 2007;29:746-52.
- Flegel WA. How I manage donors and patients with a weak D phenotype. Curr Opin Hematol 2006;13:476–483
- Flegel WA. Molecular genetics and clinical applications for RH. Transfusion and Apheresis Science 2011;44:81-91. 2.
- Sandler SG, Li W, Langeberg AL, Landy HJ. New Laboratory Procedures and Rh Blood Type Changes in a Pregnant Woman.
 Obstet Gynecol 2012;119:426–8.

Thank You

sue.johnson@bcw.edu

